[1]
|
{1}MATHER J N. Stability of\,$C^{\infty}$\,mappings, Ⅰ: The divisiontheorem[J]. Ann of Math, 1968, 87(2): 89--104.{2}MATHER J N. Stability of\,$C^{\infty}$\,mappings, Ⅱ: Infinitesimalstability implies stability[J]. Ann of Math, 1969, 89(2): 254-291.{3}MATHER J N. Stability of\,$C^{\infty}$\,mappings, Ⅲ: Finitelydetermined map germs[J]. Publ Math IHES, 1968: 279-308.{4}MATHER J N. Stability of\,$C^{\infty}$\,mappings, Ⅳ:Classification of stable germs by R-algebras[J]. Publ Math IHES,1969: 223--248.{5}MATHER J N. Stability of mappings, Ⅴ: Transversality[J]. AdvancesIn Mathematics, 1970: 301-336.{6}MATHER J N. Stability of mappings, Ⅵ: The nice dimensions[J].Proc of Liverpool Symposium I, 1970: 207-253.{7}BIRBRAIR L, COSTA J C F, FERNANDES A. Finiteness theorem fortopological contact equivalence of map germs[J]. HokkaidoMathematical Journal, 2009, 38: 511-517.{8}IZUMIYA S. Perestroikas of optical wave fronts and graphlikeLegendrian unfoldings[J]. J Diff Geom, 1993, 38: 485-500.{9}ZAKALYUKIN V M. Reconstruction of fronts and caustics depending on aparameter and versality of mappings[J]. J of Sovient Math, 1984, 27:2713-2735.{10}TAKAHASHI M. Bifurcations of completely integrable first-orderordinary differential equations[J]. Journal of MathematicalSciences. 2007, 144(1): 3854--3869.{11}TSUKADA T. A generic classification of function germs with respectto the reticular equivalence[J]. Hokkaido Mathematical Journal,2009, 38: 177-203.{12}IZUMIYA S. Generic bifurcations of varieties[J]. Manuscripta Math,1984, 46: 137-164.
|