中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于评论分析的评分预测与推荐

高祎璠 余文喆 晁平复 郑芷凌 张蓉

高祎璠, 余文喆, 晁平复, 郑芷凌, 张蓉. 基于评论分析的评分预测与推荐[J]. 华东师范大学学报(自然科学版), 2015, (3): 80-90. doi: 10.3969/j.issn.1000-5641.2015.03.010
引用本文: 高祎璠, 余文喆, 晁平复, 郑芷凌, 张蓉. 基于评论分析的评分预测与推荐[J]. 华东师范大学学报(自然科学版), 2015, (3): 80-90. doi: 10.3969/j.issn.1000-5641.2015.03.010
GAO Yi-fan, YU Wen-zhe, CHAO Ping-fu, ZHENG Zhi-ling, ZHANG Rong. Analyzing reviews for rating prediction and item recommendation[J]. Journal of East China Normal University (Natural Sciences), 2015, (3): 80-90. doi: 10.3969/j.issn.1000-5641.2015.03.010
Citation: GAO Yi-fan, YU Wen-zhe, CHAO Ping-fu, ZHENG Zhi-ling, ZHANG Rong. Analyzing reviews for rating prediction and item recommendation[J]. Journal of East China Normal University (Natural Sciences), 2015, (3): 80-90. doi: 10.3969/j.issn.1000-5641.2015.03.010

基于评论分析的评分预测与推荐

doi: 10.3969/j.issn.1000-5641.2015.03.010
基金项目: 

国家自然科学基金(61103039,61402177);国家自然科学基金重点项目(61232002)

详细信息
    作者简介:

    高祎璠,女,硕士研究生.E-mail: yfgao@ecnu.edu.cn.

    通讯作者:

    张蓉,女,博士,副教授,主要研究方向为数据挖掘、信息检索

  • 中图分类号: TP391

Analyzing reviews for rating prediction and item recommendation

  • 摘要: 推荐系统广泛地应用在网络平台中,推荐模型需要预测用户的喜好,帮助用户找到适合的电影、书籍、音乐等商品.通过对用户评分和评论信息的分析,可以发现用户关注的商品特征,并根据商品的特征,推测用户对该商品的喜好程度.本文提出将评论中隐含的语义内容与评分相结合,设计并实现了一种新颖的商品推荐模型.首先利用主题模型挖掘评论文本中隐含的主题分布,用主题分布刻画用户偏好和商品画像,在逻辑回归模型上训练主题与打分的关系,最终评分可以被视为是对用户偏好和商品画像的相似程度的量化表示.最后,本文在真实数据上进行了大量对比实验,结果证明该模型比对比系统性能优越且稳定.
  • [1] [1]RAJARAMAN A, ULLMAN J D. Mining of Massive Datasets[M]. London: Cambridge University Press, 2011.

    [2]BLANCOFERNNDEZ Y, PAZOSARIAS J J, GILSOLLA A, et al. A flexible semantic inference methodology to reason about user preferences in knowledgebased recommender systems[J]. KnowledgeBased Systems, 2008, 21(4): 305320.

    [3]MCAULEY J, LESKOVEC J. Hidden factors and hidden topics: understanding rating dimensions with review text[C]//Proceedings of the 7th ACM conference on Recommender systems. ACM, 2013: 165172.

    [4]SARWAR B, KARYPIS G, KONSTAN J, et al. Itembased collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 285295.

    [5]KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 3037.

    [6]KOREN Y, BELL R. Advances in collaborative filtering[M]//KANTOR P B, RICCI F, ROKACH L, et al. Recommender Systems Handbook. New York: Springer, 2010: 145186.

    [7]BRODY S, EIHADAD N. An unsupervised aspectsentiment model for online reviews[C]//Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2010: 804812.

    [8]JO Y, OH A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011: 815824.

    [9]TITOV I, MCDONALD R. Modeling online reviews with multigrain topic models[C]//Proceedings of the 17th international conference on World Wide Web. ACM, 2008: 111120.

    [10]TITOV I, MCDONALD R T. A Joint Model of Text and Aspect Ratings for Sentiment Summarization[C]//ACL, 2008(8): 308316.

    [11]POPESCU A M, ETZIONI O. Extracting product features and opinions from reviews[M]//KAO A, POTEET S R. Natural Language Processing and Text Mining. London: Springer, 2007: 928.

    [12]PANG B, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(12): 1135.

    [13]QU L, IFRIM G, WEIKUM G. The bagofopinions method for review rating prediction from sparse text patterns[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics. 2010: 913921.

    [14]GANU G, ELHADAD N, MARIAN A. Beyond the stars: Improving rating predictions using Review text content[C]//WebDB, 2009.

    [15]BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3: 9931022.

    [16]BAMMANN K. Statistical models: theory and practice[J]. Biometrics, 2006(62): 943.

    [17]BISHOP C M. Pattern recognition and machine learning[M]. New York: Springer, 2006.

    [18]LEMIRE D, MACLACHLAN A. Slope one predictors for online ratingbased collaborative filtering[C]//SDM, 2005, 5: 15.

    [19]GANTNER Z, RENDLE S, FREUDENTHALER C, et al. MyMediaLite: A free recommender system library[C]//Proceedings of the fifth ACM conference on Recommender systems. ACM, 2011: 305308.

    [20]TSAPARAS P, NTOULAS A, TERZI E. Selecting a comprehensive set of reviews[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011: 168176.
  • 加载中
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  20
  • PDF下载量:  1981
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-15
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回