中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反向旋转圆偏振双色激光场驱动下氩原子非顺序双电离研究

钱丽洁 杨岩 孙真荣

钱丽洁, 杨岩, 孙真荣. 反向旋转圆偏振双色激光场驱动下氩原子非顺序双电离研究[J]. 华东师范大学学报(自然科学版), 2020, (2): 55-63. doi: 10.3969/j.issn.1000-5641.201922010
引用本文: 钱丽洁, 杨岩, 孙真荣. 反向旋转圆偏振双色激光场驱动下氩原子非顺序双电离研究[J]. 华东师范大学学报(自然科学版), 2020, (2): 55-63. doi: 10.3969/j.issn.1000-5641.201922010
QIAN Lijie, YANG Yan, SUN Zhenrong. Non-sequential double ionization of argon in counterrotating circularly polarized two-color laser fields[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 55-63. doi: 10.3969/j.issn.1000-5641.201922010
Citation: QIAN Lijie, YANG Yan, SUN Zhenrong. Non-sequential double ionization of argon in counterrotating circularly polarized two-color laser fields[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 55-63. doi: 10.3969/j.issn.1000-5641.201922010

反向旋转圆偏振双色激光场驱动下氩原子非顺序双电离研究

doi: 10.3969/j.issn.1000-5641.201922010
基金项目: 国家自然科学基金(11727810); 上海市科委国际科技合作项目(16520721200)
详细信息
    通讯作者:

    杨 岩, 男, 工程师, 研究方向为量子调控. E-mail: yyang@lps.ecnu.edu.cn

    孙真荣, 男, 教授, 博士生导师, 研究方向为飞秒量子相干控制、光学材料、光生物物理. E-mail: zrsun@phy.ecnu.edu.cn

  • 中图分类号: O562.5

Non-sequential double ionization of argon in counterrotating circularly polarized two-color laser fields

  • 摘要: 在经典系综模型下, 研究了氩(Argon, Ar)原子在800 nm和400 nm反向旋转圆偏振双色(Counterrotating Circularly Polarized Two-Color, CRTC)激光场驱动下的非顺序双电离(Non-Sequential Double Ionization, NSDI)过程. 理论分析了激光强度、双色场强度比、脉冲相对相位, 以及激光脉冲宽度等光场参数对非顺序双电离机制及其量子产率的影响, 得到了双电子能量的时间演化谱; 发现并分析了两种不同的非顺序双电离机制; 讨论了电子返回碰撞能对不同非顺序双电离过程的影响.
  • 图  1  Ar原子在单色圆偏振场(绿色空心菱形)和4种不同的CRTC激光场中的双电离产率,${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ 分别为 0.5, 1, 2, 6; 阴影区域表示电离增强区, 绿色实线所在光场强度为0.4 PW/cm2

    Fig.  1  Double ionization yields of argon atoms in monochromatic circularly polarized fields (olive-colored hollow diamond) with four different CRTC laser fields. The ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ values are 0.5, 1, 2, and 6, respectively.The shaded area represents the NSDI enhancement zone, the solid green line represents a laser intensity of 0.4 PW/cm2

    图  2  图中光场强度均为0.4 PW/cm2: (a)、(b)在不同脉宽下, Ar原子双电离几率随${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $的变化曲线; (c)Ar原子双电离几率随激光脉宽的变化曲线, ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ = 2; (d)不同脉宽下双电离几率随相对相位的变化曲线, ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ = 2

    Fig.  2  The laser intensities in the four figures are all 0.4 PW/cm2: (a), (b) Double ionization probability as a function of ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ at different pulse widths; (c) Double ionization probability as a function of pulse width; (d) Double ionization probability as a function of relative phases under different pulse widths, the ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ value is 2 for (c), (d)

    图  3  3种不同${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $下电场振幅(红线, 任意单位)驱动电子轨线(黑线, 任意单位)的示意图: (a)${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ = 0.5; (b)${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ = 2; (c)${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ = 6

    Fig.  3  Schematic diagram of electric field amplitudes (red lines, a.u.) driving electron trajectories (black lines, a.u.) for three different ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $values; the ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ values are 0.5, 2, and 6 for (a), (b), and (c), respectively

    图  4  图中脉宽为10 fs, 光场强度为0.4 PW/cm2: (a)、(b 、(c)为3种不同${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $下两个电子总能量的时间演化示意图; (d)、(e)、(f)为3种代表性的电子能量演化轨线, ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $为2

    Fig.  4  The pulse width is 10 fs and the laser intensity is 0.4 PW/cm2: (a), (b), (c) Energy evolution diagram of two electrons in the ionization process at different ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $values; (d), (e), (f) Schematic diagram of three representative electron energy evolution processes; the ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $ value is 2

    图  5  RESI和RII两种电离机制在总非顺序双电离事件中的发生概率随${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $的变化曲线, 脉宽为10 fs, 光场强度为0.4 PW/cm2

    Fig.  5  The probability of RESI and RII events relative to total NSDI events as a function of the ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $, the pulse width is 10 fs and the laser intensity is 0.4 PW/cm2

    图  6  (a)、(b)、(c)、(d)分别为4种不同${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $下电子返回动能分布示意图, 蓝色虚线表示双电离需要的能量(1.02 a.u.), 红色虚线表示电子的激发能(0.63 a.u.), 合场峰值强度为0.4 PW/cm2, 脉宽10 fs

    Fig.  6  (a), (b), (c) and (d) are the distribution diagrams of the returned kinetic energy of electrons under four different ${{I}_{\rm{b}}}/{{I}_{{\rm{r}}}} $values. The dotted blue line indicates the energy required for a double ionization (1.02 a.u.) and the dotted red line indicates the electron excitation energy (0.63 a.u.), the combined field peak intensity was 0.4 PW/cm2 and the pulse width was 10 fs

  • [1] FITTINGOFF D N, BOLTON P R, CHANG B, et al. Observation of nonsequential double ionization of Helium with optical tunneling [J]. Physical Review Letters, 1992, 69(18): 2642-2645. DOI:  10.1103/PhysRevLett.69.2642.
    [2] WALKER B, SHEEHY B, DIMAURO L F, et al. Precision measurement of strong field double ionization of Helium [J]. Physical Review Letters, 1994, 73(9): 1227-1230. DOI:  10.1103/PhysRevLett.73.1227.
    [3] LI H Y, WANG B B, CHEN J, et al. Effects of a static electric field on nonsequential double ionization [J]. Physical Review A, 2007, 76(3): 033405. DOI:  10.1103/PhysRevA.76.033405.
    [4] AGOSTINI P, FABRE F, MAINFRAY G, et al. Free-free transitions following six-photon ionization of Xenon atoms [J]. Physical Review Letters, 1979, 42(17): 1127-1130. DOI:  10.1103/PhysRevLett.42.1127.
    [5] KRAUSZ F, IVANOV M. Attosecond physics [J]. Reviews of Modern Physics, 2009, 81: 163-234. DOI:  10.1103/RevModPhys.81.163.
    [6] CORKUM P B. Plasma perspective on strong-field multiphoton ionization [J]. Physical Review Letters, 1993, 71(13): 1994-1997. DOI:  10.1103/PhysRevLett.71.1994.
    [7] HAO X L, WANG G Q, JIA X Y, et al. Nonsequential double ionization of Ne in an elliptically polarized intense laser field [J]. Physical Review A, 2009, 80(2): 023408. DOI:  10.1103/PhysRevA.80.023408.
    [8] DIETRICH P, BURNETT N H, IVANOV M, et al. High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light [J]. Physical Review A, 1994, 50(5): 3585-3588. DOI:  10.1103/PhysRevA.50.R3585.
    [9] MANCUSO C A, HICKSTEIN D D, GRYCHTOL P, et al. Strong-field ionization with two-color circularly polarized laser fields [J]. Physical Review A, 2015, 91(3): 031402. DOI:  10.1103/PhysRevA.91.031402.
    [10] MANCUSO C A, HICKSTEIN D D, DORNEY K M. Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields [J]. Physical Review A, 2016, 93(5): 053406. DOI:  10.1103/PhysRevA.93.053406.
    [11] CHALOUPKA J L, HICKSTEIN D D. Dynamics of strong-field double ionization in two-color counterrotating fields [J]. Physical Review Letters, 2016, 116(14): 143005. DOI:  10.1103/PhysRevLett.116.143005.
    [12] ECKART S, RICHTER M, KUNITSKI M, et al. Nonsequential double ionization by counterrotating circularly polarized two-color laser fields [J]. Physical Review Letters, 2016, 117(13): 133202. DOI:  10.1103/PhysRevLett.117.133202.
    [13] MA X M, ZHOU Y M, CHEN Y B, et al. Timing the release of the correlated electrons in strong-field nonsequential double ionization by circularly polarized two-color laser fields [J]. Optics xpress, 2019, 27(3): 1825-1837. DOI:  10.1364/OE.27.001825.
    [14] MANCUSO C A, DORNEY K M, HICKSTEIN D D, et al. Controlling nonsequential double ionization in two-color circularly polarized femtosecond laser fields [J]. Physical Review Letters, 2016, 117(13): 133201. DOI:  10.1103/PhysRevLett.117.133201.
    [15] ECKART S, KUNITSKI M, RICHTER M. Subcycle interference upon tunnel ionization by counter-rotating two-color fields [J]. Physical Review A, 2018, 97(4): 041402. DOI:  10.1103/PhysRevA.97.041402.
    [16] LIN K, JIA X Y, YU Z Q, et al. Comparison study of strong-field ionization of molecules and atoms by bicircular two-color femtosecond laser pulses [J]. Physical Review Letters, 2017, 119(20): 203202. DOI:  10.1103/PhysRevLett.119.203202.
    [17] WANG X, EBERLY J H. Classical theory of high-field atomic ionization using elliptical polarization [J]. Physical Review A, 2012, 86(1): 013421. DOI:  10.1103/PhysRevA.86.013421.
  • 加载中
图(6)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  113
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回