中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻色-爱因斯坦凝聚体的光学色散关系

廖宇娇 董光炯

廖宇娇, 董光炯. 玻色-爱因斯坦凝聚体的光学色散关系[J]. 华东师范大学学报(自然科学版), 2020, (2): 76-82. doi: 10.3969/j.issn.1000-5641.201922013
引用本文: 廖宇娇, 董光炯. 玻色-爱因斯坦凝聚体的光学色散关系[J]. 华东师范大学学报(自然科学版), 2020, (2): 76-82. doi: 10.3969/j.issn.1000-5641.201922013
LIAO Yujiao, DONG Guangjiong. Optical dispersion of Bose-Einstein condensates[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 76-82. doi: 10.3969/j.issn.1000-5641.201922013
Citation: LIAO Yujiao, DONG Guangjiong. Optical dispersion of Bose-Einstein condensates[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 76-82. doi: 10.3969/j.issn.1000-5641.201922013

玻色-爱因斯坦凝聚体的光学色散关系

doi: 10.3969/j.issn.1000-5641.201922013
基金项目: 国家自然科学基金(11574085, 91536218, 11834003); 上海市教委科研创新计划(2019-01-07-00-05-E00079)
详细信息
    通讯作者:

    董光炯, 男, 教授, 博士生导师, 研究方向为量子光学. E-mail:gjdong@phy.ecnu.edu.cn

  • 中图分类号: O436.3

Optical dispersion of Bose-Einstein condensates

  • 摘要: 最近的研究表明, 玻色-爱因斯坦凝聚体(Bose-Einstein Condensate, BEC)可作为量子电介质材料对光场产生反作用,实现光场-物质波的协同操控. 然而 BEC 的色散性质还没有被研究.为此, 解析得到了 BEC 对大失谐光的一阶色散和二阶色散的计算公式. 数值计算表明, BEC的折射率以及二阶色散系数与红、蓝失谐的性质有关: 在红失谐时, 折射率大于1, 且二阶色散是正常色散; 在蓝失谐时, 折射率小于1, 二阶色散为反常色散. 二阶色散系数会随着失谐量的改变而剧烈变化, 当失谐量在 GHz 数量级时, 表现为强色散介质. 一阶色散和红、蓝失谐的性质关系不大, 随着失谐量的增加, 一阶色散减小, 相应的群速度增加. 因此, 对于超短脉冲光, BEC是一种新型的色散介质.
  • 图  1  雪茄型 BEC

    Fig.  1  Cigar-shaped Bose-Einstein condensate

    图  2  折射率的空间分布: (a)Δ = –2 GHz; (b)Δ = 2 GHz.

    Fig.  2  The spatial distribution of refractive index: (a)Δ = –2 GHz; (b)Δ = 2 GHz

    图  3  折射率的空间分布: (a)Δ = –2 THz; (b) Δ = 2 THz

    Fig.  3  The spatial distribution of refractive index: (a)Δ = –2 THz; (b)Δ = 2 THz

    图  4  β1 的空间分布: (a)Δ = –2 GHz; (b)Δ = 2 GHz

    Fig.  4  The spatial distribution of β1: (a)Δ = –2 GHz; (b)Δ = 2 GHz

    图  5  β1 的空间分布: (a)Δ = –2 THz; (b)Δ = 2 THz

    Fig.  5  The spatial distribution of β1: (a)Δ = –2 THz; (b)Δ = 2 THz

    图  6  β2 的空间分布: (a)Δ = –2 GHz; (b)Δ = 2 GHz

    Fig.  6  The spatial distribution of β2: (a)Δ = –2 GHz; (b)Δ = 2 GHz

    图  7  β2 的空间分布: (a)Δ=–2 THz; (b)Δ=2 THz

    Fig.  7  The spatial distribution of β2: (a)Δ=–2 THz; (b)Δ=2 THz

  • [1] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation [J]. Review of Modern Physics , 2014, 86(1): 153-185. DOI:  10.1103/RevModPhys.86.153.
    [2] BLOCH I. Ultracold quantum gases in optical lattices [J]. Nature Physics, 2005(1): 23-30. DOI:  10.1038/nphys138.
    [3] BLOCH I, DALIBARD J, NASCIMBENE S. Quantum simulations with ultracold quantum gases [J]. Nature Physics , 2012, 8(4): 267-276. DOI:  10.1038/nphys2259.
    [4] BLOCH I, DALIBARD J, ZWERGER W. Many-body physics with ultracold gases [J]. Review of Modern Physics , 2008, 80(3): 885-964. DOI:  10.1103/RevModPhys.80.885.
    [5] DUNNINGHAM J, BURNETT K, PHILLIPS W D. Bose-Einstein condensates and precision measurements [J]. Philosophical Transactions of the Royal Society A, 2006, 363(1834): 2165-2175. DOI:  10.1098/rsta.2005.1636.
    [6] BOIXO S, DATTA A, DAVIS M J, et al. Quantum metrology with Bose-Einstein condensates [J]. AIP Conference Proceedings, 2009, 1110(1): 423-426. DOI:  10.1063/1.3131366.
    [7] GINSBERG N S, GARNER S R, HAU L V. Coherent control of optical information with matter wave dynamics [J]. Nature, 2007, 445: 623-626. DOI:  10.1038/nature05493.
    [8] HANSEN A, LESLIE L S, BHATTACHARYA M, et al. Transfer and storage of optical information in a spinor Bose-Einstein condensate [J]. OSA/FiO/LS, 2010: LTuJ1.
    [9] CHU S. Cold atoms and quantum control [J]. Nature, 2002, 416: 206-210. DOI:  10.1038/416206a.
    [10] HOHENESTER U, REKDAL P K, BORZ A, et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps [J]. Physical Review A, 2007, 75: 023602. DOI:  10.1103/PhysRevA.75.023602.
    [11] HAROUTYUNYAN H L. Coherent control of single atoms and Bose-Einstein condensates by light[D]. Netherlands: Leiden University, 2004.
    [12] ZHAO L, JIANG J, TANG T, et al. Dynamics in spinor condensates tuned by a microwave dressing field [J]. Physical Review A, 2014, 89(2): 023608. DOI:  10.1103/PhysRevA.89.023608.
    [13] CHANG M S, QIN Q, ZHANG W, et al. Coherent spinor dynamics in a spin-1 Bose condensate [J]. Nature Physics , 2005, 1(2): 111-116. DOI:  10.1038/nphys153.
    [14] BOHI P, RIEDEL M F, HOFFROGGE J, et al. Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip [J]. Nature Physics , 2009, 5(8): 592-597. DOI:  10.1038/nphys1329.
    [15] ROBB G R, TESIO E, OPPO G L, et al. Quantum threshold for optomechanical self-structuring in a Bose-Einstein condensate [J]. Physical Review Letters, 2015, 114(17): 173903. DOI:  10.1103/PhysRevLett.114.173903.
    [16] OSTERMANN S, PIAZZA F, RITSCH H. Spontaneous crystallization of light and ultracold atoms [J]. Physical Review X, 2016, 6(2): 021026. DOI: 10.1103/PhysRevX.6.021026.
    [17] RODRIGUES J D, RODRIGUES J A, FERREIRA A V, et al. Photon bubble turbulence in cold atomic gases[J]. arXiv, 2016: 1604.08114v1.
    [18] LI K, DENG L, HAGLEY E W, et al. Matter-wave self-imaging by atomic center-of-mass motion induced interference [J]. Physical Review Letters, 2008, 101(25): 250401. DOI:  10.1103/PhysRevLett.101.250401.
    [19] ZHU J, DONG G, SHNEIDER M N, et al. Strong local-field effect on the dynamics of a dilute atomic gas irradiated by two counterpropagating optical fields: Beyond standard optical lattices [J]. Physical Review Letters, 2011, 106(21): 210403. DOI:  10.1103/PhysRevLett.106.210403.
    [20] DONG G, ZHU J, ZHANG W, et al. Polaritonic solitons in a Bose-Einstein condensate trapped in a soft optical lattice [J]. Physical Review Letters, 2013, 110(25): 250401. DOI:  10.1103/PhysRevLett.110.250401.
    [21] BONS P C, DE HAAS R, DE JONG D, et al. Quantum enhancement of the index of refraction in a Bose-Einstein condensate [J]. Physical Review Letters, 2016, 116(17): 173602. DOI:  10.1103/PhysRevLett.116.173602.
    [22] 秦杰利. 旋量玻色-爱因斯坦凝聚体与微波相互作用中的磁局域场效应 [D]. 上海: 华东师范大学, 2016.
    [23] 朱江. 光与超冷原子相互作用中的局域场效应 [D]. 上海: 华东师范大学, 2014.
    [24] COMPARAT D, FIORETTI A, STERN G, et al . Optimized production of large Bose-Einstein condensates [J]. Physical Review A, 2006, 73: 043410. DOI:  10.1103/PhysRevA.73.043410.
    [25] STREED E W, CHIKKATUR A P, GUSTAVSON T L, et al. Large atom number Bose-Einstein condensate machines [J]. Review of Scientific Instruments, 2006, 77(2): 023106. DOI:  10.1063/1.2163977.
    [26] VAN DER STAM K M, VAN OOIJEN E D, MEPPELINK R, et al. Large atom number Bose-Einstein condensate of sodium [J]. Review of Scientific Instruments, 2007, 78(1): 013102. DOI:  10.1063/1.2424439.
    [27] AGRAWAL G P. Nonlinear Fiber Optics[M]. 5th ed. New York: Academic Press, 2013.
    [28] GEHM M E. Preparation of an optically-trapped degenerate fermi gas of 6Li: Finding the route to degeneracy[D]. Durham: Duke University, 2003.
    [29] ZHAI Y Y, ZHANG P, CHEN X Z, et al. Bragg diffraction of a matter wave driven by a pulsed nonuniform magnetic field [J]. Physical Review A, 2013, 88: 053629. DOI:  10.1103/PhysRevA.88.053629.
    [30] PITAEVSKII L, STRINGARI S. Bose-Einstein Condensation[M]. Oxford: Clarendon Press, 2003.
    [31] PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases[M]. 2nd ed. Cambridge: Cambridge University Press, 2008.
  • 加载中
图(7)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回