中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江河口水位上升对流场和盐水入侵的影响

唐川敏 朱建荣

唐川敏, 朱建荣. 长江河口水位上升对流场和盐水入侵的影响[J]. 华东师范大学学报(自然科学版), 2020, (3): 23-31. doi: 10.3969/j.issn.1000-5641.201941001
引用本文: 唐川敏, 朱建荣. 长江河口水位上升对流场和盐水入侵的影响[J]. 华东师范大学学报(自然科学版), 2020, (3): 23-31. doi: 10.3969/j.issn.1000-5641.201941001
TANG Chuanmin, ZHU Jianrong. Influence of water level rise on currents and saltwater intrusion in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2020, (3): 23-31. doi: 10.3969/j.issn.1000-5641.201941001
Citation: TANG Chuanmin, ZHU Jianrong. Influence of water level rise on currents and saltwater intrusion in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2020, (3): 23-31. doi: 10.3969/j.issn.1000-5641.201941001

长江河口水位上升对流场和盐水入侵的影响

doi: 10.3969/j.issn.1000-5641.201941001
基金项目: 国家自然科学基金(41676083); 上海市科委重点项目(17DZ1201902); 上海教委高峰学科“岛屿大气与生态”
详细信息
    通讯作者:

    朱建荣, 男, 教授, 博士生导师, 研究方向为河口海洋学. E-mail: jrzhu@sklec.ecnu.edu.cn

  • 中图分类号: P731.2

Influence of water level rise on currents and saltwater intrusion in the Changjiang Estuary

  • 摘要: 基于长江河口水动力和盐水入侵三维数值模式ECOM-si, 通过数值模拟分析长江河口水位上升对径流、潮流和风生流的影响, 以及在多种动力因子综合作用下对流场和盐水入侵的影响. 数值实验结果表明, 在长江河口水位上升30 cm 的情况下, 各河道横截面面积增大, 向海的径流流速减小; 潮流随水深增深略微增大; 枯季北风作用产生的北港进、南港出的水平风生环流加强, 在北支向陆的风生流有所加强. 水位上升后, 北支盐水入侵增强; 南支中段盐度变化不明显; 北港、北槽盐水入侵随水位增加变化最为显著, 小潮期间盐度增大值大于1, 大潮期间增幅有所降低, 北港北汊受水深增加盐水入侵变化最为强烈; 南槽口门处滩地由于水位增加, 非线性效应减弱, 盐度不同程度的降低. 水位上升后南支水源地三个水库取水口盐度均有所上升, 减少了可取水时间, 不利于供水安全.
  • 图  1  长江河口形势图

    注: 黑点为水库取水口位置, 三角形为模式输出点

    Fig.  1  Map of the Changjiang Estuary

    图  2  模型计算区域和网格(a), 及放大的南支分汊口区域网格(b)和南北槽分汊口区域网格(c)

    Fig.  2  Model domain and grid (a), enlarged view of grid near the bifurcation of the South and North Branch (b) and near the bifurcation of the South and North passage (c)

    图  3  只有径流作用情况下水位上升前垂向平均流场分布(a)和水位上升后垂向平均流场变化(b)

    Fig.  3  Distribution of vertically averaged currents before the water level rise (a) and the difference in vertically averaged currents between the results before and after the water level rise (b) under only the force of river discharge

    图  4  只有潮汐作用情况下在模式输出点S1(上)、S2(中) 和S3(下)流速和流向随时间变化

    注: 红线为水位上升前, 黑线为水位上升后

    Fig.  4  Temporal variations in current speed and direction at site S1 (upper panel), S2 (middle panel), and S3 (lower panel)

    图  5  只有风作用的情况下, 水位上升前流场垂向平均分布图(a)、水位上升后流场变化(b)

    Fig.  5  Distribution of vertically averaged current before the water level rise (a) and the difference in vertically averaged current between the results before and after the water level rise (b) under only the force of wind

    图  6  水位上升后大潮期间涨潮垂向平均分布变化图(a)、落潮垂向平均分布变化图(b)

    Fig.  6  Variation in the vertically averaged current after the elevation rise in flood (a) and ebb (b) during spring tides

    图  7  水位上升前大潮期间盐度垂向平均分布图(a)及水位上升后盐度变化(b)

    Fig.  7  Distribution of the vertically averaged salinity before the water level rise (a) and the difference in vertically averaged salinity between the results before and after the water level rise (b) during spring tide

    图  8  水位上升后小潮期间涨潮垂向平均分布变化图(a)、落潮垂向平均分布变化图(b)

    Fig.  8  Variation in the vertically averaged current after the elevation rise in flood (a) and ebb (b) during neap tides

    图  9  水位上升前小潮期间盐度垂向平均分布图(a)及水位上升后盐度变化(b)

    Fig.  9  Distribution of the vertically averaged salinity before the water level rise (a) and the difference in vertically averaged salinity between the results before and after the water level rise (b) during neap tide

    图  10  东风西沙水库、陈行水库、青草沙水库取水口表层(左)和底层(右)盐度随时间的变化

    注: 红色实线为水位上升前盐度, 黑色实线为水位上升后盐度; 灰色虚线为0.45饮用水标准

    Fig.  10  Variation in salinity on the surface (right) and bottom (left) at the water intake of Dongfengxisha Reservoir, Chenhang Reservoir, and Qingcaosha Reservoir

  • [1] QIU C, ZHU J R, GU Y L. Impact of seasonal tide variation on saltwater on saltwater intrusion in the ChangJiang River Estuary [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(2): 342-351. DOI:  10.1007/s00343-012-1115-x.
    [2] QIU C, ZHU J R. Influence of seasonal runoff regulation by the Three Gorges Reservoir on saltwater intrusion in the Changjiang River Estuary [J]. Continental Shelf Research, 2013, 71: 16-26. DOI:  10.1016/j.csr.2013.09.024.
    [3] LÜ H H, ZHU J R. Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary [J]. Journal of Hydrology, 2018, 557: 838-850. DOI:  10.1016/j.jhydrol.2018.01.010.
    [4] LI L, ZHU J R, WU H. Impacts of wind stress on saltwater intrusion in the Yangtz Estuary [J]. Science China Earth Sciences, 2012, 55(7): 1179-1192.
    [5] LI L, ZHU J R, WU H, et al. Lateral saltwater intrusion in the North Channel of the Changjiang Estuary [J]. Estuaries & Coasts, 2014, 37(1): 36-55.
    [6] ZHU J R, WU H, LI L. Hydrodynamics of the Changjiang Estuary and Adjacent Seas [M]//Ecological Continuum from the Changjiang (Yangtze River) Watersheds to the East China Sea Continental Margin. [S.l.]: Springer International Publishing, 2015: 19-45.
    [7] 杨桂山, 朱季文. 全球海平面上升对长江口盐水入侵的影响研究 [J]. 中国科学(B辑), 1993, 23(1): 69-76.
    [8] HANSEN N D, KOTERA A, SAKAMOTO T, et al. Sensitivity of salinity intrusion to sea level rise and river flow change in Vietnamese Mekong Delta impacts on availability of irrigation water for rice cropping [J]. Journal of Agricultural Meteorology, 2008, 64(3): 167-176. DOI:  10.2480/agrmet.64.3.4.
    [9] MACCREADY P, GEYER W R. Advances in estuarine physics [J]. Annual Review of Marine Science, 2010(2): 35-58.
    [10] BLUMBERG A F, MELLOR G L. A description of a three-dimensional coastal ocean circulation model [M]//Three-Dimensional Coastal Ocean Models. Washington, DC: American Geophysical Union (AGU), 2013: 1-16.
    [11] LI L, ZHU J R, WU H, et al. A numerical study on the water diversion ratio of the Changjiang Estuary during the dry season [J]. Chinese Journal of Oceanology and Limnology, 2010, 28(3): 700-712. DOI:  10.1007/s00343-010-9114-2.
    [12] 朱建荣, 吴辉, 顾玉亮. 长江河口北支倒灌盐通量数值分析 [J]. 海洋学研究, 2011, 29(3): 1-7. DOI:  10.3969/j.issn.1001-909X.2011.03.002.
    [13] QIU C, ZHU J R. Assessing the influence of sea level rise on salt transport processes and estuarine circulation in the Changjiang River Estuary [J]. Journal of Coastal Research, 2015, 31(3): 661-670.
    [14] 李永平, 秦曾灏, 段义宏. 上海地区海平面上升趋势的预测和研究 [J]. 地理学报, 1998, 53(5): 393-403. DOI:  10.3321/j.issn:0375-5444.1998.05.002.
    [15] WU H, ZHU J R. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary [J]. Ocean Modelling, 2010, 33: 33-51. DOI:  10.1016/j.ocemod.2009.12.001.
    [16] 李路. 长江河口盐水入侵时空变化特征和机理 [D]. 上海: 华东师范大学, 2011.
  • 加载中
图(10)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  164
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08
  • 网络出版日期:  2020-05-29
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回