中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络顶点表示学习方法

周晓旭 刘迎风 付英男 朱仁煜 高明

周晓旭, 刘迎风, 付英男, 朱仁煜, 高明. 网络顶点表示学习方法[J]. 华东师范大学学报(自然科学版), 2020, (5): 83-94. doi: 10.3969/j.issn.1000-5641.202091007
引用本文: 周晓旭, 刘迎风, 付英男, 朱仁煜, 高明. 网络顶点表示学习方法[J]. 华东师范大学学报(自然科学版), 2020, (5): 83-94. doi: 10.3969/j.issn.1000-5641.202091007
ZHOU Xiaoxu, LIU Yingfeng, FU Yingnan, ZHU Renyu, GAO Ming. Approaches on network vertex embedding[J]. Journal of East China Normal University (Natural Sciences), 2020, (5): 83-94. doi: 10.3969/j.issn.1000-5641.202091007
Citation: ZHOU Xiaoxu, LIU Yingfeng, FU Yingnan, ZHU Renyu, GAO Ming. Approaches on network vertex embedding[J]. Journal of East China Normal University (Natural Sciences), 2020, (5): 83-94. doi: 10.3969/j.issn.1000-5641.202091007

网络顶点表示学习方法

doi: 10.3969/j.issn.1000-5641.202091007
基金项目: 国家重点研发计划(2016YFB1000905); 国家自然科学基金(U1911203, U1811264, 61877018, 61672234, 61672384); 中央高校基本科研业务费专项; 上海市科技兴农推广项目(T20170303); 上海市核心数学与实践重点实验室资助项目(18dz2271000)
详细信息
    通讯作者:

    刘迎风, 男, 副高级工程师, 研究方向为数据运营、数据分析和用户画像. E-mail: yfliu@shanghai.gov.cn

  • 中图分类号: TP391

Approaches on network vertex embedding

  • 摘要: 网络是一种常用的数据结构, 在社交、通信和生物等领域广泛存在, 如何对网络顶点进行表示是学术界和工业界广泛关注的难点问题之一. 网络顶点表示学习旨在将顶点映射到一个低维的向量空间, 并且能够保留网络中顶点间的拓扑结构. 本文在分析网络顶点表示学习的动机与挑战的基础上, 对目前网络顶点表示学习的主流方法进行了详细分析与比较, 主要包括基于矩阵分解、基于随机游走和基于深度学习的方法, 最后介绍了衡量网络顶点表示性能的方法.
  • 图  1  网络一阶、二阶相似性示例[3]

    Fig.  1  An example of first-order proximity and second-order proximity

    图  2  DeepWalk算法流程[15]

    Fig.  2  Workflow for the DeepWalk algorithm

    图  3  网络的两种搜索策略[17]

    Fig.  3  BFS and DFS search strategies

    图  4  相距远且结构相似的顶点 u v 示例[19]

    Fig.  4  Nodes u and v are structurally similar but far apart in the network

    图  5  PPNE框架[20]

    Fig.  5  The framework of PPNE

    图  6  SDNE框架[22]

    Fig.  6  The framework of SDNE

    图  7  SiNE框架[25]

    Fig.  7  The framework of SiNE

    图  8  图注意力机制(左图)和多头注意力(右图)[31]

    Fig.  8  Illustration of the attention mechanism (left) and multi-head attention (right)

    图  9  可视化示例

    Fig.  9  Visualization examples

  • [1] FREEMAN L C. Visualizing social networks [J]. Social Network Data Analytics, 2000, 6(4): 411-429.
    [2] THEOCHARIDIS A, DONGEN S V, ENRIGHT A J, et al. Network visualization and analysis of gene expression data using BioLayout [J]. Nature Protocol, 2009, 4(10): 1535-1550.
    [3] TANG J, QU M, WANG M, et al. LINE: Large-scale information network embedding [C]// The Web Conference. 2015: 1067-1077.
    [4] LIBENNOWELL D, KLEINBERG J. The link-prediction problem for social networks [J]. Journal of the Association for Information Science and Technology, 2007, 58(7): 1019-1031.
    [5] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data [J]. Ai Magazine, 2008, 29(3): 93-106.
    [6] HERMAN I, MELANCON G, MARSHALL M S, et al. Graph visualization and navigation in information visualization: A survey [J]. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(1): 24-43.
    [7] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.
    [8] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C]// Neural Information Processing Systems. 2001: 585-591.
    [9] CAO S, LU W, XU Q, et al. GraRep: Learning graph representations with global structural information [C]// Conference on Information and Knowledge Management. 2015: 891-900.
    [10] OU M, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding [C]// Knowledge Discovery and Data Mining. 2016: 1105-1114.
    [11] MOUSAZADEH S, COHEN I. Embedding and function extension on directed graph [J]. Signal Processing, 2015, 111: 137-149.
    [12] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C]// Neural Information Processing Systems. 2013: 3111-3119.
    [13] MIKOLOV T, CHEN K, CORRADO G S, et al. Efficient estimation of word representations in vector space [C]// International Conference on Learning Representations. 2013.
    [14] MIKOLOV T, YIH W, ZWEIG G, et al. Linguistic regularities in continuous space word representations [C]// North American Chapter of the Association for Computational Linguistics. 2013: 746-751.
    [15] PEROZZI B, ALRFOU R, SKIENA S, et al. DeepWalk: Online learning of social representations [C]// Knowledge Discovery and Data Mining. 2014: 701-710.
    [16] YANG J, LESKOVEC J. Overlapping communities explain core-periphery organization of networks [J]. Proceedings of the IEEE, 2014, 102(12): 1892-1902.
    [17] GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks [C]// Knowledge Discovery and Data Mining. 2016: 855-864.
    [18] NARAYANAN A, CHANDRAMOHAN M, CHEN L, et al. Subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs [C]// ArXiv: Learning. 2016.
    [19] RIBEIRO L F, SAVERESE P H, FIGUEIREDO D R, et al. Struc2vec: Learning node representations from structural identity [C]// Knowledge Discovery and Data Mining. 2017: 385-394.
    [20] LI C, WANG S, YANG D, et al. PPNE: Property preserving network embedding [C]// Database Systems for Advanced Applications. 2017: 163-179.
    [21] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information [C]// International Conference on Artificial Intelligence. 2015: 2111-2117.
    [22] WANG D, CUI P, ZHU W, et al. Structural deep network embedding [C]// Knowledge Discovery and Data Mining. 2016: 1225-1234.
    [23] CHANG S, HAN W, TANG J, et al. Heterogeneous network embedding via deep architectures [C]// Knowledge Discovery and Data Mining. 2015: 119-128.
    [24] TANG J, CHANG S, AGGARWAL C C, et al. Negative link prediction in social media [C]// Web Search and Data Mining. 2015: 87-96.
    [25] WANG S, TANG J, AGGARWAL C C, et al. Signed network embedding in social media [C]// Siam International Conference on Data Mining. 2017: 327-335.
    [26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Computer Vision and Pattern Recognition. 2016: 770-778.
    [27] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks [C]// ArXiv: Learning. 2016.
    [28] DEFFERRARD M, BRESSON X, VANDERGHEYNST P, et al. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Neural Information Processing Systems. 2016: 3844-3852.
    [29] NIEPERT M, AHMED M H, KUTZKOV K, et al. Learning convolutional neural networks for graphs [C]// International Conference on Machine Learning. 2016: 2014-2023.
    [30] BAHDANAU D, CHO K, BENGIO Y, et al. Neural machine translation by jointly learning to align and translate [C]// ArXiv: Computation and Language. 2014.
    [31] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [C]// ArXiv: Machine Learning. 2017.
    [32] BHAGAT S, CORMODE G, ROZENBAUM I, et al. Applying link-based classification to label blogs [C]// Web Mining and Web Usage Analysis. 2009: 97-117.
    [33] PEARSON K. LIII. On lines and planes of closest fit to systems of points in space [J]. Philosophical Magazine Series 1, 1901, 2(11): 559-572.
    [34] DER MAATEN L V, HINTON G E. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
  • 加载中
图(9)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  128
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 网络出版日期:  2020-09-24
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回