中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带波动算子的非线性Schrodinger方程的线性紧格式 (英)

李鑫 张鲁明 柴光颖

李鑫, 张鲁明, 柴光颖. 带波动算子的非线性Schrodinger方程的线性紧格式 (英)[J]. 华东师范大学学报(自然科学版), 2016, (3): 1-8. doi: 2016.03.001
引用本文: 李鑫, 张鲁明, 柴光颖. 带波动算子的非线性Schrodinger方程的线性紧格式 (英)[J]. 华东师范大学学报(自然科学版), 2016, (3): 1-8. doi: 2016.03.001
LI Xin, ZHANG Lu-Ming, CHAI Guang-Ying1. A linear compact scheme for the nonlinear Schr'odinger equation with wave operator[J]. Journal of East China Normal University (Natural Sciences), 2016, (3): 1-8. doi: 2016.03.001
Citation: LI Xin, ZHANG Lu-Ming, CHAI Guang-Ying1. A linear compact scheme for the nonlinear Schr"odinger equation with wave operator[J]. Journal of East China Normal University (Natural Sciences), 2016, (3): 1-8. doi: 2016.03.001

带波动算子的非线性Schrodinger方程的线性紧格式 (英)

doi: 2016.03.001
基金项目: 

安徽省高校自然科学研究重点项目(KJ2015A242)

详细信息
    作者简介:

    李鑫, 男, 助教, 研究方向为微分方程数值解.

    通讯作者:

    李鑫, 男, 助教, 研究方向为微分方程数值解.

  • 中图分类号: O241

A linear compact scheme for the nonlinear Schr"odinger equation with wave operator

  • 摘要: 本文对带波动算子的非线性~Schrodinger~方程提出了一个线性的紧致差分格式,从而解决了该方程的周期初值问题. 通过先验估计和能量法,证明了格式的无条件稳定性和无穷模误差,且证得格式的收敛阶为~O(h[4]+tau[2]),最后通过一组数值实验验证了理论结果。
  • [1]GUO B L, LIANG H X. On the problem of numerical calculation for a class of the system of nonlinear Schr"odinger equations with wave operator J]. Journal on Numerical Methods and Computer Applications, 1983(4): 258-263.
    [2]ZHANG F, PER'{E]Z-GGARC'{I]A V M, V'{A]ZQUEZ L. Numerical simulation of nonlinear Schr"odinger equation system: A new conservative scheme J]. Applied Mathematics and Computation, 1995,71: 165-177.
    [3]CHANG Q S, JIA E, SUN W. Difference schemes for solving the generalized nonlinear Schr"odinger equation J]. Journal of Computational Physics, 1999, 148(2): 397-415.
    [4]ZHANG L M, CHANG Q S. A new difference method for regularized long-wave equation J]. Journal on Numerical Methods and Computer Applications, 2000(4): 247-254.
    [5]ZHANG F, V'{A]ZQUEZ L. Two energy conserving numerical schemes for the Sine-Gordon equation J]. Applied Mathematics and Computation,1991, 45(1): 17-30.
    [6]WONG Y S, CHANG Q S, GONG L. An initial-boundary value problem of a nonlinear Klein-Gordon equation J]. Applied Mathematics and Computation, 1997, 84(1): 77-93.
    [7]CHANG Q S, JIANG H. A conservative difference scheme for the Zakharov equation J]. Journal of Computational Physics, 1994, 113(2): 309-319.
    [8]ZHANG L M, LI X G. A conservative finite difference scheme for a class of nonlinear Schr"odinger equation with wave operator J]. Acta Mathematica Scientia 2002, 22A(2): 258-263.
    [9]ZHANG L M, CHANG Q S. A conservative numerical scheme for a class of nonlinear Schr"odinger equation with wave operator J]. Applied Mathematics and Computation, 2003, 145(s2-3): 603-612.
    [10]WANG T C, ZHANG L M. Analysis of some new conservative schemes for nonlinear Schr"odinger equation with wave operator J]. Applied Mathematics and Computation, 2006, 182: 1780-1794.
    [11]WANG T C, ZHANG L M, CHEN F Q. Conservative difference scheme based on numerical analysis for nonlinear Schr"odinger equation with wave operator J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2006, 23(2): 87-93.
    [12]LI X, ZHANG L M, WANG S S. A compact finite difference scheme for the nonlinear Schr"odinger equation with wave operator J]. Applied Mathematics and Computation, 2012, 219: 3187-3197.
    [13]GUO B L, PASEUAL P J, RODRIGUEZ M J, et al. Numerical solution of the Sine-Gorden equation J]. Applied Mathematics and Computation, 1986, 18(1): 1-14.
    [14]CHAN T, SHEN L. Stability analysis of difference schemes for variable coefficient Schr"odinger type equations J]. SIAM Journal on Numerical Analysis, 1999, 24(2): 336-349.
  • [1] 王晶晶, 路艳琼.  二阶差分方程周期边值问题正解存在的最优条件 . 华东师范大学学报(自然科学版), 2020, (2): 41-49. doi: 10.3969/j.issn.1000-5641.201811039
    [2] 王素珍, 孟海霞.  加权梯度反应非局部扩散方程解的爆破 . 华东师范大学学报(自然科学版), 2020, (2): 50-54. doi: 10.3969/j.issn.1000-5641.201911006
    [3] 林府标, 张千宏.  一类群体平衡方程的李群分析及精确解 . 华东师范大学学报(自然科学版), 2020, (2): 15-22. doi: 10.3969/j.issn.1000-5641.201911008
    [4] 陈洁, 吴健平, 郭珮珺, 姚申君.  “保基”原则下上海市养老机构服务可达性评价 . 华东师范大学学报(自然科学版), 2020, (3): 119-128. doi: 10.3969/j.issn.1000-5641.201841038
    [5] 孙宏, 董光炯.  紧聚焦混合阶庞加莱光的自旋密度 . 华东师范大学学报(自然科学版), 2020, (2): 70-75. doi: 10.3969/j.issn.1000-5641.201922012
  • 加载中
计量
  • 文章访问数:  1083
  • HTML全文浏览量:  3
  • PDF下载量:  2776
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-27
  • 刊出日期:  2016-05-25

带波动算子的非线性Schrodinger方程的线性紧格式 (英)

doi: 2016.03.001
    基金项目:

    安徽省高校自然科学研究重点项目(KJ2015A242)

    作者简介:

    李鑫, 男, 助教, 研究方向为微分方程数值解.

    通讯作者: 李鑫, 男, 助教, 研究方向为微分方程数值解.
  • 中图分类号: O241

摘要: 本文对带波动算子的非线性~Schrodinger~方程提出了一个线性的紧致差分格式,从而解决了该方程的周期初值问题. 通过先验估计和能量法,证明了格式的无条件稳定性和无穷模误差,且证得格式的收敛阶为~O(h[4]+tau[2]),最后通过一组数值实验验证了理论结果。

English Abstract

李鑫, 张鲁明, 柴光颖. 带波动算子的非线性Schrodinger方程的线性紧格式 (英)[J]. 华东师范大学学报(自然科学版), 2016, (3): 1-8. doi: 2016.03.001
引用本文: 李鑫, 张鲁明, 柴光颖. 带波动算子的非线性Schrodinger方程的线性紧格式 (英)[J]. 华东师范大学学报(自然科学版), 2016, (3): 1-8. doi: 2016.03.001
LI Xin, ZHANG Lu-Ming, CHAI Guang-Ying1. A linear compact scheme for the nonlinear Schr'odinger equation with wave operator[J]. Journal of East China Normal University (Natural Sciences), 2016, (3): 1-8. doi: 2016.03.001
Citation: LI Xin, ZHANG Lu-Ming, CHAI Guang-Ying1. A linear compact scheme for the nonlinear Schr"odinger equation with wave operator[J]. Journal of East China Normal University (Natural Sciences), 2016, (3): 1-8. doi: 2016.03.001
参考文献 (1)

目录

    /

    返回文章
    返回