中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有年龄结构的捕食被捕食系统的 Bogdanov-Takens 分支

刘霞 焦建锋

刘霞, 焦建锋. 具有年龄结构的捕食被捕食系统的 Bogdanov-Takens 分支[J]. 华东师范大学学报(自然科学版), 2016, (3): 39-47. doi: 2016.03.005
引用本文: 刘霞, 焦建锋. 具有年龄结构的捕食被捕食系统的 Bogdanov-Takens 分支[J]. 华东师范大学学报(自然科学版), 2016, (3): 39-47. doi: 2016.03.005
LIU Xia, JIAO Jian-Feng. Bogdanov-Takens bifurcation for a delayed predator prey system with stage structure[J]. Journal of East China Normal University (Natural Sciences), 2016, (3): 39-47. doi: 2016.03.005
Citation: LIU Xia, JIAO Jian-Feng. Bogdanov-Takens bifurcation for a delayed predator prey system with stage structure[J]. Journal of East China Normal University (Natural Sciences), 2016, (3): 39-47. doi: 2016.03.005

具有年龄结构的捕食被捕食系统的 Bogdanov-Takens 分支

doi: 2016.03.005
基金项目: 

河南省教育厅科学技术研究重点项目(14A110019, 15A110034); 河南师范大学校级骨干教师项目资助

详细信息
  • 中图分类号: O~175.1

Bogdanov-Takens bifurcation for a delayed predator prey system with stage structure

  • 摘要: 本文考虑了一类具有常值收获和年龄结构的捕食被捕食系统的~Bogdanov-Takens(BT)分支问题.给出了系统的正平衡点是BT奇点的充分条件以及系统在该奇点处的开拆标准型,从而得出在该平衡点附近处会出现的分支现象
  • [1]XU R. Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator response [J]. Nonlinear Dyn, 2012, 67: 1683-1693.
    [2]DENG L W, WANG X D, PENG M. Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator [J].Applied Mathematics and Computation, 2014, 231: 214-230.
    [3]WANG L, FAN Y, LI W. Multiple bifurcations in a predator-prey system with monotonic functional response [J]. Applied Mathematics and Computation, 2006, 172: 1103-1120.
    [4]XIAO D M , RUAN S G. Multiple bifurcation in a delayed predator-prey system with nonmonotonic functional response [J]. Journal of Differential Equations, 2001, 176: 494-510.
    [5]XIA J, LIU Z, YUAN R, et al. The effects of harvesting and time delay on predator-prey systems with Holling type II functional response [J]. SIAM J Appl Math, 2009, 70: 1178-1200.
    [6]JIANG J, SONG Y L. Delay-induced Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with nonmonotonic functional response [J].Commun Nonlinear Sci Numer Simulat, 2014, 19: 2454-2465.
    [7] CAMPBELL S A, YUAN Y. Zero singularities of codimension two and three in delay differential equations [J].  Nonlinearity, 2008,  21:2671-2691.
    [8] GUO S J, MAN J J.  Center manifolds theorem for parameterized delay differential equations with applications to zero singularities [J]. Nonlinear Analysis, 2011, 74: 4418-4432.
    [9] QIAO Z Q, LIU X B, ZHU D M. Bifurcation in delay differential systems with triple-zero singularity [J]. Chinese Ann Math Ser A, 2010, 31:59-70.
    [10] FARIA T, MAGALH widetilde A ES L T.  Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity [J]. Journal of Differential Equations, 1995, 122:201-224.
    [11] CHOW S N, LI C Z, WANG D.  Normal Forms and Bifurcation of Planar Vector Fields [M]. Cambridge: Cambridge University Press, 1994.
  • 加载中
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  25
  • PDF下载量:  2267
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 刊出日期:  2016-05-25

目录

    /

    返回文章
    返回