中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河道沉积物中重金属的生态修复及根际细菌的原位检测

王蕾 祁佩时 辛明

王蕾, 祁佩时, 辛明, . 河道沉积物中重金属的生态修复及根际细菌的原位检测[J]. 华东师范大学学报(自然科学版), 2012, (1): 1-10, 36.
引用本文: 王蕾, 祁佩时, 辛明, . 河道沉积物中重金属的生态修复及根际细菌的原位检测[J]. 华东师范大学学报(自然科学版), 2012, (1): 1-10, 36.
WANG Lei, QI Pei-shi, XIN Ming, . Phytoremediation of heavy metals and rhizosphere detection of bacteria in a drainage river sediment[J]. Journal of East China Normal University (Natural Sciences), 2012, (1): 1-10, 36.
Citation: WANG Lei, QI Pei-shi, XIN Ming, . Phytoremediation of heavy metals and rhizosphere detection of bacteria in a drainage river sediment[J]. Journal of East China Normal University (Natural Sciences), 2012, (1): 1-10, 36.

河道沉积物中重金属的生态修复及根际细菌的原位检测

详细信息
  • 中图分类号: Q945

Phytoremediation of heavy metals and rhizosphere detection of bacteria in a drainage river sediment

  • 摘要: 调查分析了哈尔滨某排污河道化工区段表层沉积物中的重金属(Pb、Zn、Cr、As、Ni、Cu和Cd)含量,通过盆栽试验研究了4种当地具有金属耐性的植物(玉米、酸模叶蓼、龙葵和酸模)对受污染的河道沉积物中重金属的修复效果,进而调查了这4种植物对重金属赋值形态的影响、富集能力及重金属的转运能力.结果显示,排污河道沉积物受到多种重金属的复合污染.表层沉积物中重金属经过两季植物修复后,7种重金属的残渣态均有不同程度的减少,并且金属形态逐渐向铁锰氧化态及可交换态转化,结果说明供试植物能够调节沉积物中重金属的生物有效性.重金属在沉积物中与在植物体内具有相同的总含量趋势:Zn>Pb>Ni>Cr>Cu>As>Cd,该趋势也反映出4种供试植物的生物监测潜能.植物对重金属表现出不同的吸收特性,4种植物对Zn和Ni的富集量相对较大,而Cu在植物地上部分的含量普遍较低,Zn和Ni在植物组织中的含量范围分别为108.4~543.92 mg/kg和36.8~246.91 mg/kg.总体来说,这4种植物主要将金属元素积累在根部,而非地上部分,表现出对重金属的耐受性.酸模叶蓼、酸模和龙葵这3种植物的地上部分分别积累了高浓度的Pb、Zn和Cd,并且具有较高的转运系数(TF1),反映出这3种植物对相应的重金属具有植物提取的潜力.采用荧光原位杂交(fluorescence in situ hybridization, FISH)技术,分析对照和经过栽培试验后根际沉积物中真细菌的数量和空间分布,结果表明植物对沉积物中的细菌有明显的活化作用.
  • [1] [1]VAXEVANIDOU K, PAPASSIOPI N, PASPALIARIS I. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques[J]. Chemosphere, 2008, 70:1329-1337.

    [2]PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. J Hazard Mater, 2009,161:633-640.

    [3]PILON-SMITS E. Phytoremediation[J]. Annu Rev Plant Biol, 2005, 56:15-39.

    [4]SALT D E, SMITH R D, RASKIN I. Phytoremediation[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 643-668.

    [5]胡智勇, 陆开宏, 梁晶晶. 根际微生物在污染水体植物修复中的作用[J]. 环境科学与技术, 2010, 33(5):75-80.

    [6]DWIVEDI S, MISHRA A, KUMAR A, et al. Bioremediation potential of genus Portulaca L. collected from industrial areas in Vadodara, Gujarat, India[J]. Clean Techn Environ Policy, 2011:1-6.

    [7]GLICK B R, PATTEN C L, HOLGUIN G, et al. Biochemical and Genetic Mechanisms used by Plant Growth Promoting Bacteria[M]. London: Imperial College Press, 1999.

    [8]LI W C, YE Z H, WONG M H. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii[J]. J Exp Bot, 2007,58:4173-4182.

    [9]JIANG C Y, SHENG X F, QIAN M, et al. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metalpolluted soil[J]. Chemosphere, 2008,72:157-164.

    [10] RAJKUMAR M, FREITAS H. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 2008, 71:834-842.

    [11] XIONG J, HE Z, LIU D. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium[J]. Chemosphere, 2008,70:489-494.

    [12] KHAN M S, ZAIDI A, WANI P A, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environ Chem Lett, 2009(7):1-19.

    [13] 程先富, 朱华, 郝李霞, 等. 丘陵山区土壤阳离子交换量(CEC)的空间分布预测[J]. 应用与环境生物学报, 2008,14(4):484-487.

    [14] 鲍士旦.土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.

    [15] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of trace metals [J]. Anal Chem, 1979,51: 844-851.

    [16] CUNNINGHAM S D, BERTI W R, HUANG J W. Phytoremediation of contaminated soil[J]. Trend Biotechnol, 1995,13(9): 393-397.

    [17] MARSCHNER H, ROMHELD V. In vivo measurement of rootinduced pH changes at the soil-root interface: effect of plant species and nitrogen source[J]. Plant Physiol, 1983,111:241-251.

    [18] LEYVAL C, BERTHELIN J. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi[J]. Biol Fertil Soils, 1993,15:259-267.

    [19] 徐卫红, 黄河, 王爱华, 等. 根系分泌物对土壤重金属活化及其机理研究进展[J]. 生态环境, 2006, 15(1):184-189.

    [20] 魏树和, 周启星, 王新. 一种新发现的镉超积累植物龙葵[J]. 环境科学, 2005,26(3):167-171.

    [21] GARBISU C, HERNANDEZ-ALLICA J, BARRUTIA O, et al. Phytoremediation: a technology using green plants to remove contaminants from polluted areas[J]. Rev Environ Health, 2002,17:75-90.

    [22] GUALA S D, VEGA F A, COVELO E F. Development of a model to select plants with optimum metal phytoextraction potential[J]. Environ Sci Pollut Res, 2011, 18(6): 997-1003.

    [23] LI Y M, CHANEY R L, ANGLE J S, et al. Phytoremediation of heavy metal contaminated soils[M]// WISE D L, TRANTOLO D J, CICHON E J, et al. Bioremediation of Contaminated Soils. New York: Marcel Dekker, 2000: 837-857.

    [24] LIANG H M, LIN T H, CHIOU J M, et al. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators[J]. Environ Pollut,2009,157(6):1945-1952.

    [25] BLAYLOCK M J, SALT D E, DUSHENKOV S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environ Sci Technol, 1997,31:860-865.

    [26] CONESA H M, GARCI′A G, FAZ A′, et al. Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Unio’n Mining District (SE Spain) and their interest for further revegetation purposes[J]. Chemosphere, 2007,68:1180-1185.                                                                                                                                                                [27] 裴昕,郭智,李建勇,等.刈割对龙葵生长和富集镉的影响及其机理[J].上海交通大学学报,2007,25(2):125-129.

    [28] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry[J]. Biorecov, 1989(1): 811-826.

    [29] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989(1):81-126.

    [30] KOVC〖DD(-*2〗〖KG*5〗ˇ〖DD)〗IK J, BAC〖DD(-*2〗〖KG*5〗ˇ〖DD)〗KOR M, KADUKOV J. Physiological responses of matricaria chamomilla to cadmium and copper excess [J]. Environmental Toxicology, 2008,23(1):123-130. 

    [31] SALT D E, PRINCE R C, PICKERING I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard [J]. Plant Physiol, 1995, 109(4): 1427-1433.

    [32] MARGESIN R, PAZA G A, KASENBACHER S. Characterization of bacterial communities at heavy-metal-contaminated sites[J]. Chemosphere, 2011,82:1583-1588.

    [33] 朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境, 2003, 12(1): 102-105.

    [34] WHITFIELD SLUND M L, RUTTER A, REIMER K J, et al. The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions[J]. Science of the Total Environment, 2008, 405(1-3):14-25.
  • 加载中
计量
  • 文章访问数:  3098
  • HTML全文浏览量:  31
  • PDF下载量:  2280
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-01
  • 修回日期:  2011-01-01
  • 刊出日期:  2012-01-25

目录

    /

    返回文章
    返回