中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跳分形过程下延展期权定价

彭斌 彭菲

彭斌, 彭菲. 跳分形过程下延展期权定价[J]. 华东师范大学学报(自然科学版), 2012, (3): 30-40.
引用本文: 彭斌, 彭菲. 跳分形过程下延展期权定价[J]. 华东师范大学学报(自然科学版), 2012, (3): 30-40.
PENG Bin, PENG Fei. Pricing extendible option under jump-fraction process[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 30-40.
Citation: PENG Bin, PENG Fei. Pricing extendible option under jump-fraction process[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 30-40.

跳分形过程下延展期权定价

详细信息
  • 中图分类号: O213

Pricing extendible option under jump-fraction process

  • 摘要: 当标的资产遵循跳分形过程时, 构建了延展期权的评估框架. 首先, 在风险中性环境里, 对标的资产发生跳跃次数的收益求条件期望现值, 导出了延展一期的看涨期权解析定价公式, 并探讨了公式的一些特殊情形. 然后, 将定价公式延展到\,$M$\,期, 该延展期权价值在\,$M$\,趋于无穷极限状态时, 将收敛于永久延展期权. 提出了一种简单有效的两点外推法求极限. 最后, 提供数值结果, 阐述了定价表达式的简单实用.
  • [1] {1} BRENNAN M J, SCHWARTZ E S. Savings bonds,

    retractable bonds, and callable bonds[J]. Journal of Financial

    Economics, 1977(5): 67-88.
    {2} ANANTHANARAYANAN A L, SCHWARTZ E S. Retractable

    and extendible bonds: the Canadian experience[J]. Journal of

    Finance, 1980, 35: 31-47.
    {3} LONGSTAL F A. Pricing options with extendible

    maturities: analysis and applications[J]. Journal of Finance, 1990,

    45: 935-957.
    {4} MERTON R C. Option pricing when underlying

    stock returns are discontinuous[J]. Journal of Financial Economics,

    1976(3): 125-144.
    {5} DIAS M A G, ROCHA K M C. Petroleum concessions

    with extendible options using mean reversion with jumps to model oil

    prices[R]. Working paper, IPEA, Brazil. 2000.
    {6} GUKHAL C R. The compound option approach to

    Amercian option on jump-diffusions[J]. Journal of Economics Dynamics

    and Control, 2004, 28: 2055-2074.
    {7} PETERS E. Fractal structure in the capital

    markets[J]. Financial analyst Journal, 1989(7): 434-453.
    {8} DUNCAN T E, HU Y, PASIK-DUNCAN B. Stochastic

    calculus for fractinal Brownian motion 1: Theory[J]. SIAM J Control

    Optim, 2000, 38: 582-612.
    {9} NECULA C. Option pricing in a fractional Brownian

    motion environment[R]. Academy of Economic Studies Bucharest,

    Romania, Preprint, 2002.
    {10} HU Y. Fractional white noise calculus and

    applications to finance[C]// Infinite Dim Anal Quantum Probab

    Related Topics, 2003, 6(1): 1-32.
    {11} BAYRAKTAR E, POOR H V, SIRCAR K R.

    Estimating the fractal dimension of the S{\&}P500 index using

    wavelet analysis[J]. International Journal of Theoretical and

    Applied Finance, 2004, 7(5): 615-643.
    {12} MENG L, WANG M. Comparison of

    Black--Scholes formula with fractional Black--Scholes formula in the

    foreign exchange option market with changing volatility[J].

    Financial Engineering and the Japanese Markets, 2010, 17(2): 99-111.
    {13} XIAO W L, ZHANG W G, ZHANG X L, et al.

    Pricing currency options in a fractional Brownian motion with

    jumps[J]. Economic Modelling, 2010, (27)5: 935-942.
    {14} LIU D Y, The option pricing of better-of options

    driven by fractional Brownian motion and poisson jump process[J].

    Mathematical theory and applications, 2010(1): 22-26.
    {15} DAHLQUIST G, BJORCK A. Numerical Method[M].

    Englewood Cliffs: Prentice-Hall, 1974: 268-269.
  • [1] 张梦霞, 郑艳玲, 尹国宇, 董宏坡, 韩平, 高娟, 刘程, 常永凯, 刘敏, 侯立军.  纳米银对河口潮滩硝酸盐异化还原成铵过程的影响 . 华东师范大学学报(自然科学版), 2020, (3): 68-77. doi: 10.3969/j.issn.1000-5641.201941005
    [2] 张红丽, 尹国宇, 郑艳玲, 高娟, 高灯州, 常永凯, 刘程.  沉积物再悬浮对长江口潮滩上覆水体脱氮过程的影响 . 华东师范大学学报(自然科学版), 2020, (3): 78-87. doi: 10.3969/j.issn.1000-5641.201941007
    [3] 孙进, 杨继锋.  核子-核子散射协变手征有效场论的两圈图研究 . 华东师范大学学报(自然科学版), 2020, (2): 90-97. doi: 10.3969/j.issn.1000-5641.201922008
    [4] 王晶晶, 路艳琼.  二阶差分方程周期边值问题正解存在的最优条件 . 华东师范大学学报(自然科学版), 2020, (2): 41-49. doi: 10.3969/j.issn.1000-5641.201811039
    [5] 陆佳玉, 葛建忠, 丁平兴.  潮控型分汊河口分流过程探讨 . 华东师范大学学报(自然科学版), 2020, (3): 1-12. doi: 10.3969/j.issn.1000-5641.201941015
  • 加载中
计量
  • 文章访问数:  2188
  • HTML全文浏览量:  4
  • PDF下载量:  2530
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-01
  • 修回日期:  2011-03-01
  • 刊出日期:  2012-05-25

跳分形过程下延展期权定价

  • 中图分类号: O213

摘要: 当标的资产遵循跳分形过程时, 构建了延展期权的评估框架. 首先, 在风险中性环境里, 对标的资产发生跳跃次数的收益求条件期望现值, 导出了延展一期的看涨期权解析定价公式, 并探讨了公式的一些特殊情形. 然后, 将定价公式延展到\,$M$\,期, 该延展期权价值在\,$M$\,趋于无穷极限状态时, 将收敛于永久延展期权. 提出了一种简单有效的两点外推法求极限. 最后, 提供数值结果, 阐述了定价表达式的简单实用.

English Abstract

彭斌, 彭菲. 跳分形过程下延展期权定价[J]. 华东师范大学学报(自然科学版), 2012, (3): 30-40.
引用本文: 彭斌, 彭菲. 跳分形过程下延展期权定价[J]. 华东师范大学学报(自然科学版), 2012, (3): 30-40.
PENG Bin, PENG Fei. Pricing extendible option under jump-fraction process[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 30-40.
Citation: PENG Bin, PENG Fei. Pricing extendible option under jump-fraction process[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 30-40.
参考文献 (1)

目录

    /

    返回文章
    返回