中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两边空间-时间分数阶扩散方程的加权有限差分格式

马维元 刘华

马维元, 刘华. 两边空间-时间分数阶扩散方程的加权有限差分格式[J]. 华东师范大学学报(自然科学版), 2012, (3): 41-48,70.
引用本文: 马维元, 刘华. 两边空间-时间分数阶扩散方程的加权有限差分格式[J]. 华东师范大学学报(自然科学版), 2012, (3): 41-48,70.
MA Wei-yuan, LIU Hua. Weighted finite difference methods for two-sided space-time fractional diffusion equations[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 41-48,70.
Citation: MA Wei-yuan, LIU Hua. Weighted finite difference methods for two-sided space-time fractional diffusion equations[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 41-48,70.

两边空间-时间分数阶扩散方程的加权有限差分格式

详细信息
  • 中图分类号: O241.82

Weighted finite difference methods for two-sided space-time fractional diffusion equations

  • 摘要: 对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式. 利用能量估计, 得到了差分格式的稳定性. 然后使用数学归纳法证明了在相同的条件下, 所提出的的格式是收敛的. 最后通过一个例子说明了所提出的格式是可靠的、有效的.
  • [1] {1}SOUSA E. Finite difference approximations for a fractional advection diffusion problem[J]. Journal of Computational Physics, 2009, 228(11): 4038-4054.
    {2}LIU F, ZHUANG P, ANH V, et al. Stability and convergence of the difference methods for the space-time fractional advection--diffusion equation[J]. Applied Mathematics and Computation, 2007, 191(1): 2-20.
    {3}ZHUANG P, LIU F, ANH V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation[J]. SIAM Journal on Numerical Analysis, 2008, 46(2): 1079-1095.
    {4}RABERTO M, SCALAS E, MAINARDI F. Waiting-times and returns in high-frequency financial data: an empirical study[J]. Physica A: Statistical Mechanics and its Applications, 2002, 314(1-4): 749-755.
    {5}SABATELLI L, KEATING S, DUDLEY J, et al. Waiting time distributions in financial markets[J]. European Physical Journal B, 2002, 27(2): 273-275.
    {6}GALUE L, KALLA S L, AL-SAQABI B N. Fractional extensions of the temperature field problems in oil strata[J]. Applied Mathematics and Computation, 2007, 186(1): 35-44.
    {7}LI X, XU M, JIANG X. Homotopy perturbation method to time-fractional diffusion equation with a moving boundary[J]. Applied Mathematics and Computation, 2009, 208(2): 434-439.
    {8}ODIBAT Z, MOMANI S, ERTURK V S. Generalized differential transform method: application to differential equations of fractional order[J]. Applied Mathematics and Computation, 2008, 197(2): 67-477.
    {9}DENG W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM Journal on Numerical Analysis, 2008, 47(1): 204-226.
    {10}DENG W H. Numerical algorithm for the time fractional Fokker-Planck equation[J]. Journal of Computational Physics, 2007, 227(2): 1510-1522.
    {11}BENSON D, WHEATCRAFT S, MEERSCHAERT M. Application of a fractional advection-dispersion equation[J]. Water Resources Research, 2000, 36(2): 1403-1412.
    {12}CLARKE D D, MEERSCHAERT M M, WHEATCRAFT S W. Fractal travel time estimates for dispersive contaminants[J]. Ground Water, 2005, 43(3): 1-8.
    {13}BAEUMER B, MEERSCHAERT M M, BENSON D A, et al. Subordinated advection-dispersion equation for contaminant transport[J]. Water Resources Research, 2001, 37(6): 1543-1550.
    {14}BENSON D A, TADJERAN C, MEERSCHAERT M M, et al. Radial fractional-order dispersion through fractured rock[J]. Water Resources Research, 2004, 40(12): 1-9.
    {15}PODLUBNY I. Fractional Differential Equations[M]. [S.L]: Academic Press, 1999.
    {16}ZHANG Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics and Computation, 2009, 215(2): 524-529.
    {17}DING Z Q, XIAO A G, LI M. Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients[J]. Journal of Computational and Applied

    Mathematics, 2010, 233(8): 1905-1914.
  • [1] 周俊东.  双曲空间中具有平行平均曲率子流形的刚性 . 华东师范大学学报(自然科学版), 2020, (2): 8-14. doi: 10.3969/j.issn.1000-5641.201911009
    [2] 崔云安, 安莉丽.  赋Φ-Amemiya范数的Orlicz空间包含序渐进等距c0复本 . 华东师范大学学报(自然科学版), 2020, (2): 35-40. doi: 10.3969/j.issn.1000-5641.201911007
    [3] 林府标, 张千宏.  一类群体平衡方程的李群分析及精确解 . 华东师范大学学报(自然科学版), 2020, (2): 15-22. doi: 10.3969/j.issn.1000-5641.201911008
    [4] 陈洁, 吴健平, 郭珮珺, 姚申君.  “保基”原则下上海市养老机构服务可达性评价 . 华东师范大学学报(自然科学版), 2020, (3): 119-128. doi: 10.3969/j.issn.1000-5641.201841038
    [5] 孙宏, 董光炯.  紧聚焦混合阶庞加莱光的自旋密度 . 华东师范大学学报(自然科学版), 2020, (2): 70-75. doi: 10.3969/j.issn.1000-5641.201922012
    [6] 王素珍, 孟海霞.  加权梯度反应非局部扩散方程解的爆破 . 华东师范大学学报(自然科学版), 2020, (2): 50-54. doi: 10.3969/j.issn.1000-5641.201911006
    [7] 王晶晶, 路艳琼.  二阶差分方程周期边值问题正解存在的最优条件 . 华东师范大学学报(自然科学版), 2020, (2): 41-49. doi: 10.3969/j.issn.1000-5641.201811039
  • 加载中
计量
  • 文章访问数:  3357
  • HTML全文浏览量:  3
  • PDF下载量:  3129
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-01
  • 修回日期:  2011-06-01
  • 刊出日期:  2012-05-25

两边空间-时间分数阶扩散方程的加权有限差分格式

  • 中图分类号: O241.82

摘要: 对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式. 利用能量估计, 得到了差分格式的稳定性. 然后使用数学归纳法证明了在相同的条件下, 所提出的的格式是收敛的. 最后通过一个例子说明了所提出的格式是可靠的、有效的.

English Abstract

马维元, 刘华. 两边空间-时间分数阶扩散方程的加权有限差分格式[J]. 华东师范大学学报(自然科学版), 2012, (3): 41-48,70.
引用本文: 马维元, 刘华. 两边空间-时间分数阶扩散方程的加权有限差分格式[J]. 华东师范大学学报(自然科学版), 2012, (3): 41-48,70.
MA Wei-yuan, LIU Hua. Weighted finite difference methods for two-sided space-time fractional diffusion equations[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 41-48,70.
Citation: MA Wei-yuan, LIU Hua. Weighted finite difference methods for two-sided space-time fractional diffusion equations[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 41-48,70.
参考文献 (1)

目录

    /

    返回文章
    返回