中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

${\bm B_{\bm 2}}$~型有限W-代数的实现

曾阳 舒斌

曾阳, 舒斌. ${\bm B_{\bm 2}}$~型有限W-代数的实现[J]. 华东师范大学学报(自然科学版), 2012, (3): 85-96.
引用本文: 曾阳, 舒斌. ${\bm B_{\bm 2}}$~型有限W-代数的实现[J]. 华东师范大学学报(自然科学版), 2012, (3): 85-96.
ZENG Yang, SHU Bin. Realization of ${\bm B}_{\bm 2}$ type finite W-algebras[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 85-96.
Citation: ZENG Yang, SHU Bin. Realization of ${\bm B}_{\bm 2}$ type finite W-algebras[J]. Journal of East China Normal University (Natural Sciences), 2012, (3): 85-96.

${\bm B_{\bm 2}}$~型有限W-代数的实现

详细信息
  • 中图分类号: O152.5

Realization of ${\bm B}_{\bm 2}$ type finite W-algebras

  • 摘要: 具体构造了\,$B_{2}$\,型李代数在所有幂零轨道下对应的有限\,W-代数的生成元集, 并通过计算得出了生成元之间的关系式, 从而给出了\,$B_{2}$\,型有限\,W-代数的具体实现.
  • [1] {1} KOSTANT B. On Whittaker modules and representation theory[J]. Invent Math, 1978, 48: 101-184.
    {2} LYNCH T E. Generalized Whittaker vectors and representation theory[D]. Cambridge: MIT, 1979.
    {3} DE BOER J, TJIN T. Quantization and representation theory of finite W-algebras[J]. commun Math Phys, 1993, 158: 485-516.
    {4} PREMENT A. Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture[J]. Invent Math, 1995, 121: 79-117.
    {5} PREMENT A. Special transverse slices and their enveloping algebras[J]. Advances in Mathematics, 2002, 170:~1-55.
    {6} GINZBURG V.~Harish-Chandra bimodules for quantized Slodowy slices[J/OL]. Represent Theory, 2009, 13: 236-371.
    {7} PREMENT A. Commutative quotients of finite W-algebras[J]. Advances in Mathematics, 2010, 225:~269-306.
    {8} BRUNDAN J, KLESHCHEV A. Schur-Weyl duality for higher levels[J]. Selecta Math, 2008, 14:~1-57.
    {9} DE SOLE A, KAC V G. Finite vs affine W-algebras[J]. Japan J Math, 2006, 1: 137-261.
    {10} LOSEV I. Finite W-algebras[J/OL]. ICM talk 2010. arXiv:1003.5811.
    {11} BRUNDAN J, KLESHCHEV A. Shifted Yangians and finite W-algebras[J].~Advances in Mathematics,~2006, 200:~136-195.
    {12} BROWN J. Twisted Yangians and finite W-algebras[J]. Transform Groups, 2009, 14: 87-114.
    {13} GOODWIN S M, R\"{O}HRLE G, UBLY G. On 1-dimensional representations of finite W-algebras associated to simple Lie algebras of exceptional type[J/OL]. arXiv: 0905.3714v2, 2009.
    {14} BRUNDAN J, GOODWIN S M, KLESHCHEV A. Highest weight theory for finite W-algebras[J]. Internat Math Res Notices, 2008, 15, Art. ID rnn051.
    {15} GAN W L, GINZBURG V. Quantization of Slodowy slices[J]. Internat Math Res Notices, 2002(5): 243-255.
    {16} WANG W. Nilpotent orbits and W-algebras[J/OL]. arXiv: 0912.0689, 2009.
    {17} JANTZEN J C. Nilpotent orbits in representation theory[M]. Progress in Math 228. [S.L.]: Birkh\"{a}user, 2004.
    {18} CLARKE M C. Computing nilpotent and unipotent canonical forms:~A symmetric approach[J/OL]. arXiv: 1004.1116, 2010.
    {19} PREMET A. Enveloping algebras of Slodowy slices and the Joseph ideal[J]. J Eur Math Soc, 2007(9): 487-543.
    {20} BRUNDAND J, GOODWIN S M. Good grading polytopes[J]. Proc London Math Soc, 2007, 94: 155-180.
    {21} HUMPHREYS J E. Introduction to Lie algebras and representation theory[M]. New York: Springer-Verlag, 1972.
    {22} PREMET A. Primitive ideals, non-restricted representations and finite W-algebras[J]. Mosc Math J, 2007(7): 743-762.
  • 加载中
计量
  • 文章访问数:  3054
  • HTML全文浏览量:  9
  • PDF下载量:  2297
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-01
  • 修回日期:  2011-06-01
  • 刊出日期:  2012-05-25

目录

    /

    返回文章
    返回