中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆镍硅微通道板用于三维超级电容器的研究

刘涛 王斐 徐少辉 王连卫

刘涛, 王斐, 徐少辉, 王连卫. 覆镍硅微通道板用于三维超级电容器的研究[J]. 华东师范大学学报(自然科学版), 2012, (5): 1-9.
引用本文: 刘涛, 王斐, 徐少辉, 王连卫. 覆镍硅微通道板用于三维超级电容器的研究[J]. 华东师范大学学报(自然科学版), 2012, (5): 1-9.
LIU Tao, WANG Fei, XU Shao-hui, WANG Lian-wei. Three-dimensional nickel-coated silicon microchannel plates for supercapacitors[J]. Journal of East China Normal University (Natural Sciences), 2012, (5): 1-9.
Citation: LIU Tao, WANG Fei, XU Shao-hui, WANG Lian-wei. Three-dimensional nickel-coated silicon microchannel plates for supercapacitors[J]. Journal of East China Normal University (Natural Sciences), 2012, (5): 1-9.

覆镍硅微通道板用于三维超级电容器的研究

详细信息
  • 中图分类号: O649.4

Three-dimensional nickel-coated silicon microchannel plates for supercapacitors

  • 摘要: 采用无电镀方法在硅微通道板上制备镍,然后进一步通过化学液相沉积法,在其上面制备了氢氧化镍纳米晶体,获得了一种具有独特三维结构的Si-MCP/Ni/Ni(OH)2超级电容器.研究发现,制得的氢氧化镍晶体由许多纳米薄片组成,XRD图谱显示其具备和两种晶型.通过循环伏安和计时电位法对该超级电容器进行了性能测试.在放电电流为10 mA时,样品获得最大放电比容量,为2 150 F/g.在多次循环测试中,样品的稳定性良好.随着退火温度的升高,样品的容量下降.研究发现氢氧化镍的表面积减小是导致容量衰减的主要原因.由于该电容器有着巨大的比容量和良好的稳定性,该三维结构有望应用于二次电源和相关器件中.
  • [1] [1] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

    [2] BURKE A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50.

    [3] KOTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483-2498.

    [4] PANG S C, ANDERSON M A, CHAPMAN T W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society, 2000, 147(2): 444-450.

    [5] WANG Y H, ZHITOMIRSKY I. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors[J]. Langmuir, 2009, 25(17): 9684-9689.

    [6] CHEN S, ZHU J W, HAN Q F, et al. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties[J]. Crystal Growth Design, 2009, 9(10): 4356-4361.

    [7] NAGARAJAN N, HUMADI H, ZHITOMIRSKY I. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors[J]. Electrochimica Acta, 2006, 51(15): 3039-3045.

    [8] AN G M, YU P, XIAO M J, et al. Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors[J]. Nanotechnology, 2008, 19(27): 275709.

    [9] PATIL U M, GURAV K V, FULARI V J, et al. Characterization of honeycomb-like beta-Ni(OH)2 thin films synthesized by chemical bath deposition method and their supercapacitor application[J]. Journal of Power Sources, 2009, 188(1): 338-342.

    [10] ROBERTS M E, WHEELER D R, MCKENZIE B B, et al. High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine)[J]. Journal of Materials Chemistry, 2009, 19(38): 6977-6979.

    [11] ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanoriber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392-1401.

    [12] FANG Y, LIU J, YU D J, et al. Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition[J]. Journal of Power Sources, 2010, 195(2): 674-679.

    [13] DAI H J, WONG E W, LIEBER C M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes[J]. Science, 1996, 272(5261): 523-526.

    [14] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56.

    [15] NIU C M, SICHEL E K, HOCH R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters, 1997, 70(11): 1480-1482.

    [16] SUN D, RILEY A E, CADBY A J, et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters[J]. Nature, 2006, 441(7097): 1126-1130.

    [17] ATTARD G S, BARTLETT P N, COLEMAN N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline media[J]. Science, 1997, 278: 838-840.

    [18] GANESH V, LAKSHMINARAYANAN V, Preparation of high surface area nickel electrodeposit using a liquid crystal template technique[J]. Electrochimica Acta, 2004, 49(21): 3561-3572.

    [19] NELSON P A, OWEN J R, A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes[J]. Journal of the Electrochemistry Society, 2003, 150(10): A1313-A1317.

    [20] WU M S, WANG M J. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors[J]. Chemical Communications, 2010, 46(37): 6968-6970.

    [21] INAMDAR A I, KIM Y S, PAWAR S M, et al. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors[J]. Journal of Power Sources, 2011, 196(4): 2393-2397.

    [22] CONWAY B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications[M]. New York: Plenum, 1999.

    [23] MIAO F J, TAO B R, SUN L, et al. Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites[J]. Sensors and Actuators: A Physical, 2010, 160(1): 48-53.

    [24] DEKI S, AOI Y, MIYAKE Y, et al. Novel wet process for preparation of vanadium oxide thin film[J]. Materials Research Bulletin, 1996, 31(11): 1399-1406.

    [25] KAMATH P V, DIXIT M, INDIRA L, et al. Stabilized alpha-Ni(OH)2 as electrode material for alkaline secondary cells[J]. Journal of the Electrochemical Society, 1994, 141(11): 2956-2959.

    [26] JAYASHREE R S, KAMATH P V. Suppression of the αβ-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations[J]. Journal of Applied Electrochemistry, 2001, 31(12): 1315-1320.

    [27] ZHENG J P, CYGAN P J, JOW T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995, 142(8): 2699-2703.

    [28] JIANG J H, KUCERNAK A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization[J]. Electrochimica Acta, 2002, 47(15): 2381-2386.

    [29] ZHAO D D, BAO S J, ZHOU W H, et al. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9(5): 869-874.

    [30] GAMBY J, TABERNA P L, SIMON P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources, 2001, 101(1): 109-116.

    [31] LOZANO-CASTELLO D, CAZORLA-AMOROS D, LINARES-SOLANO A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte[J]. Carbon, 2003, 41(9): 1765-1775.

    [32] YUAN D, CI P L, TIAN F, et al. Large-size P-type silicon microchannel plates prepared by photoelectrochemical etching[J]. Journal of Microlithography, Microfabrication, and Microsystems, 2009, 8(3): 033012.
  • 加载中
计量
  • 文章访问数:  2625
  • HTML全文浏览量:  37
  • PDF下载量:  2294
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-01
  • 修回日期:  2012-03-01
  • 刊出日期:  2012-09-25

目录

    /

    返回文章
    返回