中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曹春岳:运用介电泳技术将SnO2纳米球体作为敏感元件的相对湿度传感器特性

曹春岳

曹春岳. 曹春岳:运用介电泳技术将SnO2纳米球体作为敏感元件的相对湿度传感器特性[J]. 华东师范大学学报(自然科学版), 2012, (5): 16-23,36.
引用本文: 曹春岳. 曹春岳:运用介电泳技术将SnO2纳米球体作为敏感元件的相对湿度传感器特性[J]. 华东师范大学学报(自然科学版), 2012, (5): 16-23,36.
CAO Chun-yue. Characterization of a humidity sensor fabricated with SnO2 nano-spheres via dielectrophoresis[J]. Journal of East China Normal University (Natural Sciences), 2012, (5): 16-23,36.
Citation: CAO Chun-yue. Characterization of a humidity sensor fabricated with SnO2 nano-spheres via dielectrophoresis[J]. Journal of East China Normal University (Natural Sciences), 2012, (5): 16-23,36.

曹春岳:运用介电泳技术将SnO2纳米球体作为敏感元件的相对湿度传感器特性

详细信息
  • 中图分类号: TB383; TP212

Characterization of a humidity sensor fabricated with SnO2 nano-spheres via dielectrophoresis

  • 摘要: 通过介电泳技术将敏感元件SnO2球形纳米颗粒定位到间距为20m的Au叉指电极之间, 制备了一种相对湿度传感器. 从获得的I-V曲线可以看出, Au/SnO2/SnO2/Au组合结构具有良好的电导率. 通过自己设计的相对湿度测试系统 测试了其传感特性, 结果显示该湿度传感器具有高的敏感性及可重复性. 证明了运用介电泳方法所制备的湿度传感器在各种不同的湿度条件下, 都具有很好的稳定性, 即使是在非常高的湿度条件下. 并且这种方法可以广泛用于其它种类的纳米球和各种不同器件结构中.
  • [1] {1} YING J R, WAN C R, HE P J. Sol--gel

    processed TiO$_2$--K$_2$O--LiZnVO$_4$ ceramic thin films as

    innovative humidity sensors[J]. Sensors and Actuators B: Chemical,

    2000, 62(3): 165-170.
    {2} SONG X F, QI Q, ZHANG T, et al. A humidity sensor based on KCl-doped

    SnO$_2$ nanofibers[J]. Sensors and Actuators B: Chemical, 2009,

    138(1): 368-373.
    {3} ZHOU X F, ZHANG J, JIANG T, et al. Humidity detection by nanostructured

    ZnO: A wireless quartz crystal microbalance investigation[J].

    Sensors and Actuators A: Physical, 2007, 135(1): 209-214.
    {4} COMINI E, FAGLIA G, SBERVEGLIERI G, et al. Tin oxide nanobelts

    electrical and sensing properties[J]. Sensors and Actuators B:

    Chemical, 2005, 111-112: 2-6.
    {5} SHIMIZU Y, JONO A, HYODO T, et al. Preparation of large mesoporous SnO$_2$

    powder for gas sensor application[J]. Sensors and Actuators B:

    Chemical, 2005, 108(1-2): 56-61.
    {6} COMINI E, FAGLIA G, SBERVEGLIERI G, et al. Stable and highly sensitive

    gas sensors based on semiconducting oxide nanobelts[J]. Applied

    Physics Letters, 2002, 81(10): 1869(1-3).
    {7} CHO P S, KIM K W, LEE J H. Improvement of dynamic gas sensing behavior

    of SnO$_2$ acicular particles by microwave calcination[J]. Sensors

    and Actuators B: Chemical, 2007, 123(2): 1034--1039.
    {8} KUMAR S, RAJARAMAN S, GERHARDT R A, et al. Tin oxide nanosensor

    fabrication using AC dielectrophoretic manipulation of nanobelts[J].

    Electrochimica Acta, 2005, 51(5): 943-951.
    {9} LI J Q, ZHANG Q, YANG D J, et al. Fabrication of carbon nanotube

    field effect transistors by AC dielectrophoresis method[J]. Carbon,

    2004, 42(11): 2263-2267.
    {10} KIM J K, PARK C S, LEE D W, et al. Measurement of the gauge factor of

    carbon fiber and its application to sensors, Microelectron[J].

    Microelectronic Engineering, 2008, 85(5-6): 787-791.
    {11} TUNG S, ROKADIA, LI W J. A micro shear stress sensor based on laterally

    aligned carbon nanotubes[J]. Sensors and Actuators A: Physical,

    2007, 133(2): 431-438.
    {12} MOTAYED A, HE M Q, ALBERT V, et al. Mohammad, Realization of reliable

    GaN nanowire transistors utilizing dielectrophoretic alignment

    technique[J]. Journal of Applied Physics, 2006, 100(11):

    114310(1-9).
    {13} SUEHIRO J, ZHOU G B, IMAKIIRE H, et al. Controlled fabrication of

    carbon nanotube NO$_{2 }$ gas sensor using dielectrophoretic

    impedance measurement[J]. Sensors and Actuators B: Chemical, 2005,

    108(1-2): 398-403.
    {14} LIU Y L, CHUNG J H, LIU W K, et al. Dielectrophoretic assembly of

    nanowires[J]. Journal of Physical Chemistry B, 2006, 110(29):

    14098-14106.
    {15} KADAKSHAM J, SINGH P, AUBRY N. Manipulation of particles using

    dielectrophoresis[J]. Mechanics Research Communications, 2006,

    33(1): 108-122.
    {16} ZHENG L F, LI S D, BRODY J P, et al. Manipulating nanoparticles in

    solution with electrically contacted nanotubes using

    dielectrophoresis[J]. Langmuir, 2004, 20(20): 8612-8619.
    {17} KEVIN D, HERMANSON, SIMON O, et al. Dielectrophoretic assembly of

    electrically functional microwires from nanoparticle suspensions[J].

    Science, 2001, 294(2): 1082-1086.
    {18} CHEN D F, DU H, LI W H. Bioparticle separation and manipulation using

    dielectrophoresis[J]. Sensors and Actuators A: Physical, 2007,

    133(2): 329-334.
    {19} LIU X M, SPENCER J L, ALAN B, et al. Electric-field carbon nanotubes in

    different dielectric solvents[J]. Current Applied Physics, 2004,

    4(2-4): 125-128.
    {20} PAPADAKIS S J, GU Z, GRACIAS D H. Dielectrophoretic assembly of

    reversible and irreversible metal nanowire networks and vertically

    aligned arrays[J]. Applied Physics Letters, 2006, 88(23):

    233118(1-3).
    {21} MARKX G H, TALARY M S, PETHIG R. Separation of viable and non-viable

    yeast using dielectrophoresis[J]. Journal of Biotechnology, 1994,

    32(1): 29-37.
    {22} POHL H A. Dielectrophoresis[M]. Cambridge: Cambridge University Press,

    1978.
    {23} PAUL R, KARAN. Theory of electrode polarization in dielectrophoresis

    and electrorotation[J]. Journal of Colloid and Interface Science,

    1997, 194(1): 239-248.\\
  • 加载中
计量
  • 文章访问数:  1995
  • HTML全文浏览量:  40
  • PDF下载量:  2247
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-01
  • 修回日期:  2012-02-01
  • 刊出日期:  2012-09-25

目录

    /

    返回文章
    返回