中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性二阶边界阻尼的粘弹性方程解的能量衰减估计

陆军 张宏伟

陆军, 张宏伟. 非线性二阶边界阻尼的粘弹性方程解的能量衰减估计[J]. 华东师范大学学报(自然科学版), 2012, (5): 63-68.
引用本文: 陆军, 张宏伟. 非线性二阶边界阻尼的粘弹性方程解的能量衰减估计[J]. 华东师范大学学报(自然科学版), 2012, (5): 63-68.
LU Jun, ZHANG Hong-wei. Energy decay estimation for the nonlinear viscoelastic equation with nonlinear second-order boundary damping[J]. Journal of East China Normal University (Natural Sciences), 2012, (5): 63-68.
Citation: LU Jun, ZHANG Hong-wei. Energy decay estimation for the nonlinear viscoelastic equation with nonlinear second-order boundary damping[J]. Journal of East China Normal University (Natural Sciences), 2012, (5): 63-68.

非线性二阶边界阻尼的粘弹性方程解的能量衰减估计

详细信息
  • 中图分类号: 35B40, 35L20

Energy decay estimation for the nonlinear viscoelastic equation with nonlinear second-order boundary damping

  • 摘要: 讨论了具有非线性二阶边界阻尼的粘弹性方程混合问题. 利用\,Nakao\,不等式在阻尼项为一般 情况时得到了能量的指数衰减估计; 在阻尼项为多项式时得到了能量的代数衰减估计.
  • [1] {1} ANDREWS K T, KUTTLER K L, SHILLOR M. Second order

    evolution equations with dynamic boundary conditions[J]. Journal of

    Mathematical Analysis and Applications, 1996, 197: 781-795.
    {2} KUTTLER K L. Velocity dependent boundary

    conditions for the displacement in one dimensional viscoelastic

    material[J]. Rocky Mountain J Math, 1994, 24: 579-613.
    {3} LEE H P. Vibration of an axially moving beam

    with a tip mass[J]. Mech Res Comm, 1993, 20: 391-397.
    {4} COUSIN A T,  FROTA C L, LAR'KIN N A. Regular

    solutions and energy decay for the equations of viscoelasticity with

    nonlinear damping on the boundary[J]. Journal of Mathematical

    Analysis and Applications, 1998, 224: 273-276.
    {5} LARKIN N A, NOVIKOV V A, YANENKO N N.

    Nonlnear Equations of Variable Type[M]. Norosibirsk: Nauka, 1983.
    {6} GREENBERG G M, LI T T. The effect of

    boundary damping for the wave equation[J]. J Differential Equations,

    1984, 52: 66-75.
    {7} 呼青英, 张宏伟. 混合Cable-Mass动力系统的一

    致稳定性[J]. 动力与控制学报, 2007, (5): 27-29.
    {8} HU Q Y, ZHU C K, ZHANG X Z. Energy decay

    estimates for an Euller-Bernoulli beam with a tip mass[J]. Ann Diff

    Eqs, 2009, 25(2): 161-164.
    {9} PELLICER M. Large time dynamics of a

    nonlinear spring-mass-damper model[J]. Nonlinear Analysis, 2008, 69:

    3110-3127.
    {10} LITTMAN W,  MARKUS L. Stabilization of

    a hybrid system of elasticity by feedback boundary damping[J]. Ann

    Mat Pura Appl, 1988, 152: 281-330.
    {11} AUTUORI G,  PUCCI P. Kirchhoff systems

    with dynamic boundary conditions[J]. Nonlinear Analysis, 2010, 73:

    1952-1965.
    {12}  GERBI S,  SAID-HOUARI B. Local existence

    and exponential growth for a semilinear damped wave equation with

    dynamic boundary conditions[J]. Advances in Differential Equations,

    2008, 13(11): 1051-1074.
    {13} GERBI S, SAID-HOUARI B. Asymptotic stability and blow up for a

    semilinear damped wave equation with dynamic boundary conditions[J].

    Nonlinear Analysis, 2011, 74: 7137-7150.
    {14} MASLOV V P, MOSOLOV P P. Nonilinear Wave Equation Perturbed

    by Viscousterms[M]. Berlin: Walter de Gruyter,  2000.
    {15} DORONIN G G,  LAR'KIN N A. SOUZA A J. A

    hyperbolic problem with nonlinear second order boundary damping[J].

    Electronic J Diff Equations, (28): 1-10.
    {16} DORONIN G G,  LAR'KIN N A. Global solvability

     for the quasilinear damped

    wave equation with nonlinear second order boundary condition[J].

    Nonlinear Analysis, 2002, 50: 1119-1134.
    {17} NAKAO M. Energy decay for the quasilinear

     wave equation with viscosity[J].

    Math Zeitscher, 1995, 219: 289-299.
    {18} LIONS J-L. MAGENES E. Problemes aux Limites Non

    Homogenes et Applications[M]. Paris:  Dunod,  1968.
  • 加载中
计量
  • 文章访问数:  2432
  • HTML全文浏览量:  15
  • PDF下载量:  2140
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-01
  • 修回日期:  2012-02-01
  • 刊出日期:  2012-09-25

目录

    /

    返回文章
    返回