中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

崇明东滩芦苇光合特征对模拟增温的响应

祁秋艳 杨淑慧 仲启铖 张超 王开运

祁秋艳, 杨淑慧, 仲启铖, 张超, 王开运. 崇明东滩芦苇光合特征对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2012, (6): 29-38.
引用本文: 祁秋艳, 杨淑慧, 仲启铖, 张超, 王开运. 崇明东滩芦苇光合特征对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2012, (6): 29-38.
QI Qiu-yan, YANG Shu-hui, ZHONG Qi-cheng, ZHANG Chao, WANG Kai-yun. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China[J]. Journal of East China Normal University (Natural Sciences), 2012, (6): 29-38.
Citation: QI Qiu-yan, YANG Shu-hui, ZHONG Qi-cheng, ZHANG Chao, WANG Kai-yun. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China[J]. Journal of East China Normal University (Natural Sciences), 2012, (6): 29-38.

崇明东滩芦苇光合特征对模拟增温的响应

详细信息
  • 中图分类号: Q148; Q945; S564

Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China

  • 摘要: 采用开顶式生长室(Open-top chambers, OTC)模拟未来气候变暖的方法,研究崇明东滩湿地植物芦苇(〖WTBX〗Phragmites australis〖WTBZ〗)快速生长期光合特征对模拟增温的响应,并探究其响应机制.结果表明:增温使芦苇的净光合速(〖WTBX〗Pn〖WTBZ〗)、蒸腾速率(〖WTBX〗Tr〖WTBZ〗)和气孔导度(〖WTBX〗Gs〖WTBZ〗)分别降低了11.9%、22.5%和21.7%,但是对胞间CO2浓度(〖WTBX〗Ci〖WTBZ〗)和水分利用效率(〖WTBX〗WUE〖WTBZ〗)没有明显影响;此外,非线性拟合芦苇叶片光合响应曲线的结果显示,两种处理下芦苇的光合响应曲线均表现为先迅速增加后渐平缓的趋势,OTC内芦苇的光合响应曲线始终位于对照的下方;同时,增温显著地降低了芦苇的表观量子效率(〖WTBX〗AQY〖WTBZ〗)和光饱和点(〖WTBX〗LSP〖WTBZ〗),分别降低了12.1%和22.0%;而芦苇的暗呼吸速率(〖WTBX〗Rd〖WTBZ〗)和光补偿点(〖WTBX〗LCP〖WTBZ〗) 却显著增加,分别为16.5%和14.9%,但对最大净光合速率(〖WTBX〗P〖WTBZ〗max)无明显影响.增温条件下,芦苇的叶氮含量(〖WTBX〗N〖WTBZ〗mass)显著减少,比叶重(〖WTBX〗LMA〖WTBZ〗)显著增加,但光合氮素利用效率(〖WTBX〗PNUE〖WTBZ〗)未产生显著的变化.另外,相关性分析的结果显示:〖WTBX〗LMA〖WTBZ〗与〖WTBX〗P〖WTBZ〗max、PNUE呈现出显著的负相关,与〖WTBX〗N〖WTBZ〗mass呈现极显著的负相关.〖WTBX〗N〖WTBZ〗mass与〖WTBX〗PNUE〖WTBZ〗之间呈现极显著正相关,二者均与〖WTBX〗P〖WTBZ〗max显著正相关,其中〖WTBX〗N〖WTBZ〗mass与〖WTBX〗P〖WTBZ〗max的相关性则达到了极显著的水平.总之,模拟增温效应对芦苇的光合特征产生了显著的影响.
  • [1] [1] WANG K Y, KELLOMKI S, LAITINEN K. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2[J]. Agricultural and Forest Meteorology, 1996, 82(1-4): 195-217.

    [2] IPCC Fourth Assessment Report of Working Group. Climate Change 2007: The Physical Science Basis[R]. Cambridge: Cambridge University Press, 2007.

    [3] REFAIE G E. Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt[J]. Ain Shams Eengineering Journal, 2010, 1(1): 1-9.

    [4] 孟宪民.湿地与全球环境变化[J].地理科学, 1999, 19(5): 385-391. 

    [5] MORISON J L, LAWLOR D W. Interactions between increasing CO2 concentration and temperature on plant growth[J]. Plant Cell Environment, 1999, 22(6): 659-682.

    [6] 曾小平, 赵平, 孙谷畴.气候变暖对陆生植物的影响[J].应用生态学报, 2006, 17(12): 2445-2450.

    [7] SHAH N H, PAULSEN G M. Interaction of drought and high temperature on photosynthesis and grain-filling wheat[J]. Plant Soil, 2003, 257(1): 219-226.

    [8] HARTE J, SHAW R. Shifting dominance within a montane vegetation community: Results of a climate-warmin experiment[J]. Science, 1995, 267(5199): 876-880.

    [9] 石福孙,吴宁,吴彦,等.模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响[J].应用与环境生物学报, 2009, 15(6): 750-755.

    [10] RUSTAD L, CAMPBELL J, MARION G, et al. A meta analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562.

    [11] KOU T J, ZHU J G, XIE Z B, et al. Effect of elevated atmospheric pCO2 on soil respiration during wheat bloom-growth period[J]. Journal of Agro-Environment Science, 2007, 26(3): 1111-1116.

    [12] TISSUE D T, THOMAS R B, STRAIN B R. Atmospheric CO2 enrichment increases growth and photosynthesis of〖WTBX〗 Pinus taeda〖WTBZ〗: a 4-year experiment in the field[J]. Plant, Cell and Environment, 1997, 20(9): 1123-1134.

    [13] ERICE G, IRIGOYEN J J, PEREZ P, et al. Effect of elevated CO2, temperature and drought on photosynthesis of 〖WTBX〗nodulated alfalfa〖WTBZ〗 during a cutting regrowth cycle[J]. Physioligia Plantarum, 2006, 126(3): 458-468.

    [14] BUNCE J A. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings growth outdoors at an elevated concentration of carbon dioxide[J]. Plant Cell and Environment, 1992, 15(5): 541-549.

    [15] LOIK M E, REDAR S P, HARTE J. Photosynthetic responses to a climate-warming manipulation for contrasting meadowspecies in the Rocky Mountains, Colorado, USA[J]. Functional Ecology, 2000, 14(2): 166-175.

    [16] 郑淑霞, 上官周平.不同功能型植物光合特征及其与叶氮含量、比叶重的关系[J].生态学报,2007, 27(1): 171-181.

    [17] EVANS J R. Photosynthesis and nitrogen relationship s in leaves of C3 plants[J]. Oecologia, 1989, 78: 9-19.

    [18] TAKASHIMA T, HIKOSAKE K, HIROSE T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species[J]. Plant Cell and Environment, 2004, 27: 1047-1054.

    [19] 赵平,KRIEBITZSCH W,张志权.欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量[J].热带亚热带植物学报,1999, 7(2): 133-139.

    [20] WARREN C R, ADAMS M A. Evergreen trees do notmaximize instantaneous photosynthesis[J]. Trends in Plant Science, 2004(9): 270-274.

    [21] HENRY G H R, MOLAU U T. Undra plants and climate change:the International Tundra Experiment(ITEX)[J]. Global Change Biology, 1997, 3(s1): 1-9.

    [22] WOOKEY P A, PARSONS A N, WELKER J M, et al. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants[J]. Oikos, 1993, 67(3): 490-502.

    [23] 石冰,马金妍,王开运, 等.崇明东滩围垦芦苇生长、繁殖和生物量分配对大气温度升高的响应[J].长江流域资源与环境,2010, 19(4): 383-388.

    [24] 董艳,姜彬慧,于梅,等.五十年辽河三角洲湿地气候变化对植物种群的影响[J].沈阳化工学学学报, 2008, 22(1): 29-34.

    [25] 李荣平,刘晓梅,周广胜.盘锦湿地芦苇物候特征及其对气候变化的响应[J ].气象环境学报, 2006, 22(4): 30-34.

    [26] BASSMAN J B, ZWIER J C.Gas exchange characteristics of 〖WTBX〗Popldua trichocarpa,Populua dehoides 〖WTBZ〗and 〖WTBX〗Populua trichocarpa × P.dehoides〖WTBZ〗 clone[J].Tree Physiology, 1991, 8(2): 145-149.

    [27] POORTER H, EVANS J R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area[J]. Oecologia, 1998, 116: 26-37.

    [28] ZHAO C Z, LIU Q. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization[J]. Canadian Journal of Forest Research, 2008, 38: 1-12.

    [29] DE VALPINE P, HARTE J. Plant response to experimental warming in a montane meadow[J]. Ecology, 2001, 82(3): 637-648.

    [30] 于强,王天铎.光合作用—蒸腾作用—气孔导度的耦合模型及C3植物叶片对环境因子的生理响应[J].植物学报, 1998, 40(8): 740-754.

    [31] 张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报, 2004, 30(3):269-276.

    [32] LONG S P, AINSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide:plant FACE the future[J]. Annual Review of Plant Biology, 2000,14: 166-175.

    [33] ZHANG Y B, DUAN B L, QIAO Y Z, et al. Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density[J]. Forest Ecology and Management, 2008, 255(5-6): 1937-1944.

    [34] 许大全.气孔的不均匀关闭与光合作用的非气孔限制[J]. 植物生理学通讯,1995, 31(4): 246-252.

    [35] 焦娟玉,尹春英,陈珂.土壤水、氮供应对麻疯树幼苗光合特性的影响[J].2011, 35(1): 91-99.

    [36] 冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重、光合特性和暗呼吸对生长光环境的适应[J]. 生态学报, 2002, 22(6): 901-909.

    [37] 李春燕.常绿阔叶林树种栲树幼苗对不同光环境的光合生理响应[J].生态学杂志,2009, 28(9): 1801-1807.

    [38] WARREN C R, ADAMS M A. Evergreen trees do notmaximize instantaneous photosynthesis[J]. Trends in Plant Science, 2004(9): 270-274.

    [39] 徐振锋,胡庭兴,张力,等.青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应[J].植物生态学报,2010, 34(3): 263-270.
  • 加载中
计量
  • 文章访问数:  2135
  • HTML全文浏览量:  10
  • PDF下载量:  2075
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-01
  • 修回日期:  2011-12-01
  • 刊出日期:  2012-11-25

目录

    /

    返回文章
    返回