中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某类\,Finsler-Einstein\,空间之间的共形映射

张晓玲

张晓玲. 某类\,Finsler-Einstein\,空间之间的共形映射[J]. 华东师范大学学报(自然科学版), 2013, (2): 160-166.
引用本文: 张晓玲. 某类\,Finsler-Einstein\,空间之间的共形映射[J]. 华东师范大学学报(自然科学版), 2013, (2): 160-166.
ZHANG Xiao-ling. Conformal transformation between some Finsler Einstein spaces[J]. Journal of East China Normal University (Natural Sciences), 2013, (2): 160-166.
Citation: ZHANG Xiao-ling. Conformal transformation between some Finsler Einstein spaces[J]. Journal of East China Normal University (Natural Sciences), 2013, (2): 160-166.

某类\,Finsler-Einstein\,空间之间的共形映射

详细信息
  • 中图分类号: O18

Conformal transformation between some Finsler Einstein spaces

  • 摘要: Liouville\,定理证明了欧氏空间到自身的共形变换是莫比乌斯变换. 关于\,Riemann\,空间,Brinkmann \,首先得到了一般的结论. 但对\,Finsler\,空间的研究乏人问津. 本文运用导航术和共形映射的性质证明了\,Randers\,空间(或\,Kropina\,空间)之间保 Einstein度量的共形变换必是相似变换.
  • [1] {1}

    BRINKMANN H W. Einstein spaces which are mapped conformally on each

    other[J]. Mathematische Annalen, 1925, 94(5): 119-145.
    {2}

    EINSENHART L P. Riemannian Geometry[M]. Princeton: Princenton Univ

    Press, 1926.
    {3}

    FEDISHCHENKO S I. Special conformal mappings of Riemannian spaces.

    II[J]. Ukrain Geom Sb. 1982, 25: 130-137, 144 (Russian).
    {4}

    PENROSE R, HERMANN WEYL. space-time and conformal

    geometry[C]//Hermann Weg (1885-1985). Zrich: Eidgenssische Tech

    Hochschule, 1986: 25-52.
    {5}

    K\"{U}HNEL W. Conformal transformations between Einstein

    spaces[C]//Conformal Geometry Aspects Math E 12, F. Braunschweig:

    Vieweg Sohn, 1988: 105-146.
    {6}

    K\"{U}HNEL W, RADEMACHER H B. Conformal diffeomorphisms preserving

    the Ricci tensor[J]. Proc Amer Math Soc, 1995, 123(9): 2841-2848.
    {7}

    K\"{U}HNEL W, RADEMACHER H B. Conformal transformations of

    pseudo-Riemannian manifolds[C]//Recent Developments in

    Pseudo-Riemannian Geometry. ESI Lect in Math and Phys, Z\"{u}rich:

    EMS. 2008: 261-298.
    {8}

    MIKES J, GAVRILLCHENKO M L, GLADYSHEVA, E. I. Conformal mappings

    onto Einstein spaces[J]. Mosc Univ Math Bull, 1994, 49(3): 10-14.
    {9}

    AMINOVA A V. Projective transformations of pseudo-Riemannian

    manifolds[J]. J Math Sci, 2003, 113(3): 367-470.
    {10}

    KISOSAK V A, MATVEEV V S. There are no conformal Einstein rescalings

    of complete pseudo-Riemannian Einstein metrics[J]. C R Math Acad

    Sci, 2009, 347(17-18): 1067-1069.
    {11}

    BAO D W, ROBLES C. On Ricci curvature and flag curvature in Finsler

    geometry[C]//A Sampler of Finsler Geometry: MSRI Series {\bf 50}.

    Cambriclge: Camb Univ Press, 2004: 197-259.
    {12}

    CHENG X Y, SHEN Z M, TIAN Y F. A Class of Einstein

    $(\alpha,\beta)$-metrics[J]. Israel Journal of Mathematics, 2012,

    192: 1-29.
    {13}

    ZHANG X L, SHEN Y B. On Einstein Kropina metrics[J]. Differential

    Geometry and Its Applications, 2013(31): 80-92.
    {14}

    BAO D W, CHEN X S, SHEN Z M. An Introduction to Riemann-Finsler

    Geometry[M]. Springer, 2000.
    {15}

    BAO D W, ROBLES C, SHEN Z M. Zermelo navigation on Riemannian

    manifolds[J]. Differential Geometry, 2004, 66: 377-435.
  • [1] 周俊东.  双曲空间中具有平行平均曲率子流形的刚性 . 华东师范大学学报(自然科学版), 2020, (2): 8-14. doi: 10.3969/j.issn.1000-5641.201911009
    [2] 崔云安, 安莉丽.  赋Φ-Amemiya范数的Orlicz空间包含序渐进等距c0复本 . 华东师范大学学报(自然科学版), 2020, (2): 35-40. doi: 10.3969/j.issn.1000-5641.201911007
  • 加载中
计量
  • 文章访问数:  1886
  • HTML全文浏览量:  3
  • PDF下载量:  3092
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-01
  • 修回日期:  2012-07-01
  • 刊出日期:  2013-03-25

某类\,Finsler-Einstein\,空间之间的共形映射

  • 中图分类号: O18

摘要: Liouville\,定理证明了欧氏空间到自身的共形变换是莫比乌斯变换. 关于\,Riemann\,空间,Brinkmann \,首先得到了一般的结论. 但对\,Finsler\,空间的研究乏人问津. 本文运用导航术和共形映射的性质证明了\,Randers\,空间(或\,Kropina\,空间)之间保 Einstein度量的共形变换必是相似变换.

English Abstract

张晓玲. 某类\,Finsler-Einstein\,空间之间的共形映射[J]. 华东师范大学学报(自然科学版), 2013, (2): 160-166.
引用本文: 张晓玲. 某类\,Finsler-Einstein\,空间之间的共形映射[J]. 华东师范大学学报(自然科学版), 2013, (2): 160-166.
ZHANG Xiao-ling. Conformal transformation between some Finsler Einstein spaces[J]. Journal of East China Normal University (Natural Sciences), 2013, (2): 160-166.
Citation: ZHANG Xiao-ling. Conformal transformation between some Finsler Einstein spaces[J]. Journal of East China Normal University (Natural Sciences), 2013, (2): 160-166.
参考文献 (1)

目录

    /

    返回文章
    返回