中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广告点击率估算技术综述

纪文迪 王晓玲 周傲英

纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报(自然科学版), 2013, (3): 1-14.
引用本文: 纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报(自然科学版), 2013, (3): 1-14.
JI Wen-di, WANG Xiao-ling, ZHOU Ao-ying. Techniques for estimating click-through rates of Web advertisements: A survey[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 1-14.
Citation: JI Wen-di, WANG Xiao-ling, ZHOU Ao-ying. Techniques for estimating click-through rates of Web advertisements: A survey[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 1-14.

广告点击率估算技术综述

详细信息
  • 中图分类号: TP391

Techniques for estimating click-through rates of Web advertisements: A survey

  • 摘要: 计算广告是根据给定的用户和网页内容,通过计算得到与之最匹配的广告并进行精准定向投放的一种广告投放机制.广告的点击率预测是指利用点击日志预测的点击率,其结果受到广告的自身性质、广告位置、页面信息、用户性质,以及广告主信誉等诸多因素的影响.有效地预测广告的点击率,对于提高广告投放的效率有着至关重要的作用.本文介绍了广告点击率预测的常用模型,包括历史数据丰富的广告点击率预测模型、新广告和稀疏广告的点击率估算模型和点击率预测的优化模型,并通过真实数据集举例说明了其实现的方法.
  • [1] [1] 周傲英,周敏奇,宫学庆.计算广告:以数据为核心的Web综合应用[J].计算机学报,2011,34(10): 1805-1819.

    [2] BRODER A, JOSIFOVSKI V. Introduction to Computational Advertising [M/OL]//The Course of Computation Advertising, Stanford University. 2011[2013-03-21]. http://www.stanford.edu/class/msande239.

    [3] GABRILOVICH E. An Overview of Computational Advertising [R/OL]. Yahoo Research. 2008[2013-03-21]. http://research.yahoo.com/pub/2915.

    [4] AGARWAL D, CHAKRABARTI D. Statistical Challenges in Online Advertising [R/OL]. Yahoo Research. 2008[2013-03-21]. http://research.yahoo.com/ pub/2430.

    [5] GRAEPEL T, BORCHERT T, HERBRICH R, et al. Probabilistic Machine Learning in Computational Advertising [R/OL]. Microsoft Research, 2009[2013-03-21]. http://research. microsoft.com/en-us/um/beijing/events/mload-2010.

    [6] DID-IT, ENQUIRO, EYETOOLS. Eye Tracking Study [R/OL]. 2007[2013-03-21]. http://www.enquiro.com/ eye-tracking-pr.asp.

    [7] AGICHTEIN E, BRILL E, DUMAIS S. Improving web search ranking by incorporating user behavior information[C]//Proc 29th SIGIR, 2006:19-26.

    [8] JOACHIMS T. Optimizing search engines using clickthrough data[C]//Proc KDD, 2002.

    [9] JOACHIMS T, GRANKA L, PAN B, et al. Accurately interpreting clickthrough data as implicit feedback[C]//Proc SIGIR, 2005.

    [10] GRANKA L A, JOACHIMS T, GAY G. Eye-tracking analysis of user behavior in www search[C]//Proc SIGIR’04, 2004.

    [11] ZHANG V, JONES R. Comparing click logs and editorial labels for training query rewriting[C]//Query Log Analysis: Social And Technological Challenges. Banff: WWW’07, 2007.

    [12] RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting Clicks: Estimating the Click-Through Rate for New Ads[C]//Banff: WWW’07, 2007.

    [13] DUPRET G E, PIWOWARSKI B. A user browsing model to predict search engine click data from past observations.[C]//SIGIR’08, 2008.

    [14] CHAPELLE O, ZHANG Y. A dynamic Bayesian network click model for web search ranking[C]//WWW’09, 2009.

    [15] GUO F, LIU C, KANNAN A, et al. Click chain model in web search[C]//WWW’09, 2009.

    [16] LIU C, GUO F, FALOUTSOS C. Bbm: Bayesian browsing model from petabyte-scale data[C]//KDD’09, 2009.

    [17] ZHU Z A, CHEN W, MINKA T, et al. A novel click model and its applications to online advertising[C]//WSDM’10, 2010.

    [18] DUPRET G, LIAO C. A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine[C]//WSDM’10, 2010.

    [19] BECKER H, MEEK C, CHICKERING  D M. Modeling contextual factors of click rates[C]//AAAI’07, 2007.

    [20] CHEN W Z, JI Z L, SHEN  S, et al. A Whole Page Click Model to Better Interpret Search Engine Click Data[C]//AAAI’11, 2011.

    [21] CHAKRABARTI D, AGARWAL D, JOSIFOVSKI  V. Contextual Advertising by Combining Relevance with Click Feedback[C]//WWW’08, 2008.

    [22] GRAEPEL T, CANDELA J Q, BORCHERT T, et al. Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine[C]//ICML’10, 2010.

    [23] M Regelson, D C. Fain. Predicting Click Through Rate Using Keyword Clusters[C]//EC’06, 2006.

    [24] DEMBCZYNSKI K, KOTOWSKI W, WEISS D. Predicting Ads’ ClickThrough Rate with Decision Rules[C]//WWW’08, 2008.

    [25] WANG X, LI W, CUI  Y, et al. Click Through Rate Estimation for Rare Events in Online Advertising[C/OL]//Online Multimedia Advertising: Techniques and Technologies, 2011, Chapter 1[2013-03-21]. http://labs.yahoo.com/node/434.

    [26] AGARWAL D, BRODER A Z, CHAKRABARTI  D, et al. Estimating rates of rare events at multiple resolutions[C]//KDD’07, 2007.

    [27] AGARWAL D, AGRAWAL R, KHANNA R, et al. Estimating rates of rare events with multiple hierarchies through scalable log-linear models[C]//KDD’10, 2010.

    [28] AGARWAL D, CHEN  B C, ELANGO P. Spatio-Temporal Models for Estimating Click through Rate[C]//WWW’09, 2009.

    [29] YAN J, LIU N, WANG G, et al. How much can Behavioral Targeting Help Online Advertising?[C]//WWW’09, 2009.

    [30] AGARWAL D, CHEN  B-C, ELANGO P, et al. Click shaping to optimize multiple objectives[C]//KDD’11, 2011.

    [31] SHEN S, HU B, CHEN W Z, et al. Personalized click model through collaborative filtering[C]//WSDM’12, 2012.

    [32] CHEN W Z, WANG D, ZHANG Y C, et al. A noise-aware click model for web search[C]//WSDM’12, 2012.

    [33] HU B, ZHANG Y C, CHEN W Z, et al. Characterizing search intent diversity into click models[C]//WWW’11, 2011.

    [34] ASHKAN A, CLARKE C L A, AGICHTEIN E, et al. Estimating Ad Clickthrough Rate through Query Intent Analysis[C]//WI-IAT’09, 2009.

    [35] XIONG C, WANG T, DING W, et al. Relation Click prediction for sponsored search[C]//WSDM’12, 2012.

    [36] IMMORLICA N, JAIN K, MAHDIAN M, et al. Click Fraud Resistant Methods for Learning[C]//WINE’05, 2005.

    [37] GOLLAPUDI S, PANIGRAHY R, GOLDSZMIDT M. Inferring Clickthrough Rates on Ads from Click Behavior on Search Results[C]//WSDM’11, 2011.

    [38] TENCEN T. KDD CUP[EB/OL].2012[2013-03-21]. http://www.kddcup2012.org/c/kddcup2012-track2.
  • [1] 施沈阳, 葛建忠, 陈建忠, 郑晓琴, 丁平兴.  基于FVCOM的物理—生物地球化学耦合模型构建与应用 . 华东师范大学学报(自然科学版), 2020, (3): 55-67. doi: 10.3969/j.issn.1000-5641.201941008
  • 加载中
计量
  • 文章访问数:  5728
  • HTML全文浏览量:  14
  • PDF下载量:  7068
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-01
  • 修回日期:  2013-04-01
  • 刊出日期:  2013-05-25

广告点击率估算技术综述

  • 中图分类号: TP391

摘要: 计算广告是根据给定的用户和网页内容,通过计算得到与之最匹配的广告并进行精准定向投放的一种广告投放机制.广告的点击率预测是指利用点击日志预测的点击率,其结果受到广告的自身性质、广告位置、页面信息、用户性质,以及广告主信誉等诸多因素的影响.有效地预测广告的点击率,对于提高广告投放的效率有着至关重要的作用.本文介绍了广告点击率预测的常用模型,包括历史数据丰富的广告点击率预测模型、新广告和稀疏广告的点击率估算模型和点击率预测的优化模型,并通过真实数据集举例说明了其实现的方法.

English Abstract

纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报(自然科学版), 2013, (3): 1-14.
引用本文: 纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报(自然科学版), 2013, (3): 1-14.
JI Wen-di, WANG Xiao-ling, ZHOU Ao-ying. Techniques for estimating click-through rates of Web advertisements: A survey[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 1-14.
Citation: JI Wen-di, WANG Xiao-ling, ZHOU Ao-ying. Techniques for estimating click-through rates of Web advertisements: A survey[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 1-14.
参考文献 (1)

目录

    /

    返回文章
    返回