中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子商务中的商品推荐系统

余文喆 张蓉 王立

余文喆, 张蓉, 王立. 电子商务中的商品推荐系统[J]. 华东师范大学学报(自然科学版), 2013, (3): 46-53.
引用本文: 余文喆, 张蓉, 王立. 电子商务中的商品推荐系统[J]. 华东师范大学学报(自然科学版), 2013, (3): 46-53.
YU Wen-zhe, ZHANG Rong, WANG Li. Recommendation in E-commerce[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 46-53.
Citation: YU Wen-zhe, ZHANG Rong, WANG Li. Recommendation in E-commerce[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 46-53.

电子商务中的商品推荐系统

详细信息
  • 中图分类号: TP31

Recommendation in E-commerce

  • 摘要: 对于迅速崛起的各种电子商务网站来说,为了促进网站发展和增加经济效益,吸引新客户并留住老客户是一种有效的手段.设计和实现高效的商品推荐算法是各大网站最为关注的技术之一.在电子商务网站中常见的一种推荐方式是以广告的形式在边栏推荐商品.目前,商品推荐系统根据推荐算法分为基于内容、协同过滤和混合的推荐系统.然而,现有推荐算法在电子商务网站的实际应用中正面临挑战,包括推荐结果的多样化、个性化和智能化以及时效化.现有算法需要不断改进来解决这些问题,从而完善电子商务推荐系统.
  • [1] [1] WEN H J, CHEN H G, HWANG H G. E-commerce web site design: strategies and models[J]. Information Management & Computer Security, 2001, 9(1): 5-12.

    [2] ARENS W F. 当代广告学[M]. 8版.北京:人民邮电出版社, 2006.

    [3] EBAY. Online Retail Media[EB/OL]. 2012. http://www2.ebayadvertising.com/uk/online-retail-media.

    [4] HABEGGER J. Why Amazon is about to Become a Force in Online Advertising[EB/OL]. 2011. http://www.commercialalert.org/issues/culture/internet-socialmedia/why-amazon-is-about-to-become-a-force-in-online-advertising.

    [5] O’REILLY T. The Convergence of Advertising and E-Commerce[EB/OL]. 2010. http://radar.oreilly.com/2010/02/convergence-advertising-mobile-ecommerce.html.

    [6] SCHAFER J B, KONSTAN J, RIEDI J. Recommender systems in e-commerce[C]. Proceedings of the 1st ACM conference on Electronic commerce, 1999: 158-166.

    [7] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. Knowledge and Data Engineering, 2005, 17(6): 734-749.

    [8] BAEZA-YATES R, RIBEIRO-NETO B. Modern Information Retrieval[M]. [S.l.] Addison-Wesley, 1999.

    [9] MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[C]. Proceedings of the fifth ACM conference on Digital libraries, 2000: 195-204.

    [10] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70.

    [11] RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, 1994: 175-186.

    [12] SHARDANAND U, MAES P. Social information filtering: algorithms for automating “word of mouth”[C]. Proceedings of the SIGCHI conference on Human Factors in Computing Systems, 1995: 210-217.

    [13] LINDEN G, SMITH B, YORK J. Amazon.com recommendations: item-to-item collaborative filtering[J]. Internet Computing, IEEE, 2003, 7(1): 76-80.

    [14] NETFLIX. The Netflix Prize[EB/OL]. 2009. http://www.netflixprize.com.

    [15] RODGERS J L, NICEWANDER W A. Thirteen ways to look at the correlation coefficient[J]. American Statistician, 1988, 42(1): 59-66.

    [16] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, 1998: 43-52.

    [17] DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.

    [18] CLAYPOOL M, GOKHALE A, MIRANDA T, et al. Combining content-based and collaborative filters in an online newspaper[C]. Proceedings of ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation, 1999.

    [19] BALABANOVIC M, SHOHAM Y. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72.

    [20] BASU C, HIRSH H, COHEN W. Recommendation as classification: using social and content-based information in recommendation[C]. Proceedings of the 15th national/10th conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, 1998: 714-720.

    [21] AGRAWAL R, GOLLAPUDI S, HALVERSON A, et al. Diversifying search results[C]. Proceedings of the Second ACM International Conference on Web Search and Data Mining, 2009.

    [22] ZIEGLER C N, MCNEE S M, KONSTAN J A, et al. Improving recommendation lists through topic diversification[C]. Proceedings of the 14th international conference on World Wide Web, 2005: 22-32.

    [23] YU C, LAKSHMANAN L, AMER-YAHIA S. It takes variety to make a world: diversification in recommender systems[C]. Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, 2009: 368-378.

    [24] BOIM R, MILO T, NOVGORODOV S. DiRec: Diversified recommendations for semantic-less Collaborative Filtering[C]. Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, 2011: 1312-1315.

    [25] ADOMAVICIUS G, TUZHILIN A. Personalization technologies: a process-oriented perspective[J]. Communications of the ACM, 2005, 48(10): 83-90.

    [26] VAN DER HEIJDEN H, KOTSIS G, KRONSTEINER R. Mobile Recommendation Systems for Decision Making ‘On the Go’[C]. Proceedings of the International Conference on Mobile Business, 2005: 137-143.
  • [1] 吴雪, 黄力, 靳程, 钱深华, 杨永川.  重庆主城区杂草物种组成特征及多样性格局 . 华东师范大学学报(自然科学版), 2020, (2): 98-109. doi: 10.3969/j.issn.1000-5641.201931002
    [2] 吴威, 李彩霞, 陈雪初.  基于生态系统服务的海岸带生态修复工程成效评估 . 华东师范大学学报(自然科学版), 2020, (3): 98-108. doi: 10.3969/j.issn.1000-5641.201941027
  • 加载中
计量
  • 文章访问数:  3276
  • HTML全文浏览量:  4
  • PDF下载量:  3487
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-01
  • 修回日期:  2013-04-01
  • 刊出日期:  2013-05-25

电子商务中的商品推荐系统

  • 中图分类号: TP31

摘要: 对于迅速崛起的各种电子商务网站来说,为了促进网站发展和增加经济效益,吸引新客户并留住老客户是一种有效的手段.设计和实现高效的商品推荐算法是各大网站最为关注的技术之一.在电子商务网站中常见的一种推荐方式是以广告的形式在边栏推荐商品.目前,商品推荐系统根据推荐算法分为基于内容、协同过滤和混合的推荐系统.然而,现有推荐算法在电子商务网站的实际应用中正面临挑战,包括推荐结果的多样化、个性化和智能化以及时效化.现有算法需要不断改进来解决这些问题,从而完善电子商务推荐系统.

English Abstract

余文喆, 张蓉, 王立. 电子商务中的商品推荐系统[J]. 华东师范大学学报(自然科学版), 2013, (3): 46-53.
引用本文: 余文喆, 张蓉, 王立. 电子商务中的商品推荐系统[J]. 华东师范大学学报(自然科学版), 2013, (3): 46-53.
YU Wen-zhe, ZHANG Rong, WANG Li. Recommendation in E-commerce[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 46-53.
Citation: YU Wen-zhe, ZHANG Rong, WANG Li. Recommendation in E-commerce[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 46-53.
参考文献 (1)

目录

    /

    返回文章
    返回