中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

确定有限多个曲面实交集的拓扑

高犇 陈玉福

高犇, 陈玉福. 确定有限多个曲面实交集的拓扑[J]. 华东师范大学学报(自然科学版), 2014, (1): 36-46.
引用本文: 高犇, 陈玉福. 确定有限多个曲面实交集的拓扑[J]. 华东师范大学学报(自然科学版), 2014, (1): 36-46.
GAO Ben, CHEN Yu-fu. Determining the topology of real intersection of algebraic surfaces[J]. Journal of East China Normal University (Natural Sciences), 2014, (1): 36-46.
Citation: GAO Ben, CHEN Yu-fu. Determining the topology of real intersection of algebraic surfaces[J]. Journal of East China Normal University (Natural Sciences), 2014, (1): 36-46.

确定有限多个曲面实交集的拓扑

详细信息
  • 中图分类号: O154

Determining the topology of real intersection of algebraic surfaces

  • 摘要: 提出一个关于计算曲面实交集拓扑的有效算法, 其中曲面由有限多个实系数三元多项式所定义. 这个算法使用了实交集至多两个投影的拓扑信息. 在此过程中, 必须使得有限多个曲面满足一定的条件,这些条件通过线性坐标变换可以得到,并且应用一些方法来检测这些条件是否满足.
  • [1] {1}BAJAJ C, HOFFMANN C M. Tracing surfaces intersection[J]. Comput Aided Geom Design, 1988(5): 285-307.
    {2}KEYSER J, CULVER T, MANOCHA D, et al. Efficient and exact manipulation of algebraic points and curves[J]. Comput Aided Geom Design, 2000(32): 649-662.
    {3} KEYSER J, CULVER T, MANOCHA D, et al. A library for efficient and exact manipulation of algebraic points and curves[C]//Proc 15th Annu ACM Sympos Comput Geom, 1999: 360-369.
    {4}SHARIR M. Arrangements and Their Applications[M]//SACK J. Handbook of Computational Geometry. North Holland: Elsevier, 2000: 49-119.
    {5}HALPERIN D, SHARIR M. Arrangements and Their Applications in Robotics: Recent Developments[C]//Proceedings of the Workshop on Algorithmic Foundations of Robotics. 1995: 495-511.
    {6}GONZALEZ-VEGA L, NECULA I. Efficient topology determination of implicitly defined algebraic plane curves[J]. Comput Aided Geom Design, 2002, 19(9): 719-743.
    {7}ALCAZ{A}R J G, SENDRA J R. Computation of the topology of algebraic space curves[J]. J Symbolic Comput, 2005,39(6): 719-744.
    {8}  DAOUDA N D, BERNARD M, OLIVIER R. On the computation of the topology of a non-reduced implicit space curve[C]//Proceedings of the 21st International Symposium On Symbolic and Alyebraic Computation. New York: ACM, 2008: 47-54.
    {9} SHEN L Y, CHENG J S, JIA X H, Homeomorphic approximation of the intersection curve of two rational surfaces[J].  Computer Aided Goemetric Design, 2012, 29(8): 613-625.
    {10} BASU S, POLLACK R, ROY M F. Algorithms in real algebraic geometry [M]//Algorithms and Computation in Mathematics 10. Berlin: Springer-Verlag, 2003.
    {11}CHEN Y F. Lectures on Computer Algebra[M]. Beijing: Higher Education Press, 2009.
    {12}WOLPERT N. An Exact and Efficient Approach for Computing a Cell in an Arrangement of Quadrics[D]. Saarbr"ucken: Universit"ades Saarlandes  2002.
    {13}SCHOMER E, WOLPERT N. An exact and efficient approach for computing a cell in an arrangement of quadrics[J]. Computational Geometry: Theory and Applications, 2006, 33(1-2): 65-97.
    {14}COX D, LITTLE J, O'SHEA D. Ideals,Varieties,and Algorithms[M]. Berlin: Springer-Verlag. 2004.
    {15}COLLINS G E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition[J]. Automata Theory and Formal Languages, 1975(33): 134-183.
    {16}ARNON D S, COLLINS G E, MCCALLUM S. Cylindrical algebraic decomposition I: The basic algorithm[J]. SIAM J Comput, 1984, 13(4): 865-877.
    {17} RUPPRECHT D. An algorithm for computing certified approximate GCD of n univariate polynomials[J]. J Pure Appl Algebra, 1999, 139: 255-284.
  • 加载中
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  8
  • PDF下载量:  2062
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-01
  • 修回日期:  2013-04-01
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回