中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 6
Dec.  2019
Turn off MathJax
Article Contents
DOU Jian-kai, LIN Xin, HU Wen-xin. Algorithm for mining approximate frequent subgraphs in a single graph[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 73-87. doi: 10.3969/j.issn.1000-5641.2019.06.008
Citation: DOU Jian-kai, LIN Xin, HU Wen-xin. Algorithm for mining approximate frequent subgraphs in a single graph[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 73-87. doi: 10.3969/j.issn.1000-5641.2019.06.008

Algorithm for mining approximate frequent subgraphs in a single graph

doi: 10.3969/j.issn.1000-5641.2019.06.008
  • Received Date: 2018-12-21
  • Publish Date: 2019-11-25
  • Graph mining is an important part of data mining, and significant research has been dedicated to the field. Due to the inevitability of noise during data acquisition, it is crucial to address the issue of approximation in mining frequent subgraphs. Previous work has only considered the absolute value of the graph edit distance (GED); however, the relative value between the GED and the size of the subgraph should also be considered. Hence, in this paper, we propose a novel algorithm to mine approximate frequent subgraphs in a single graph; this algortihm takes into account the size of current subgraphs for the calculation of approximations. We increase the efficiency of this algorithm by estimating the upper bound of frequent subgraphs, and pruning according to local anti-monotonicity. Experimental results show that this algorithm can find subgraphs that are missed by traditional mining algorithms, and our proposed approach is relatively efficent compared to other algorithms.
  • loading
  • [1]
    YAN X F, HAN J W. gSpan: Graph-based substructure pattern mining[C]//Proceedings of the 2002 IEEE International Conference on Data Mining. 2002: 721-724.
    [2]
    ELSEIDY M, ABDELHAMID E, SKIADOPOULOS S, et al. GraMi:Frequent subgraph and pattern mining in a single large graph[J]. Proceedings of the VLDB Endowment, 2014, 7:517-528. doi:  10.14778/2732286.2732289
    [3]
    CHEN C, YAN X F, ZHU F D, et al. gApprox: Mining frequent approximate patterns from a massive network[C]//7th IEEE International Conference on Data Mining. 2007: 445-450.
    [4]
    FLORES-GARRIDO M, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F. AGraP:An algorithm for mining frequent patterns in a single graph using inexact matching[J]. Knowledge and Information Systems, 2015, 2(44):385-406. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234951655/
    [5]
    KURAMOCHI M, KARYPIS G. Finding frequent patterns in a large sparse graph[J]. Data Mining and Knowledge Discovery, 2005, 11(3):243-271. doi:  10.1007/s10618-005-0003-9
    [6]
    NIJSSEN S, KOK J N. A quickstart in frequent structure mining can make a difference[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004: 647-652.
    [7]
    ALONSO A G, PAGOLA J E M, CARRASCO-OCHOA J A, et al. Mining frequent connected subgraphs reducing the number of candidates[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2008: 365-376.
    [8]
    RANU S, SINGH A K. Graphsig: A scalable approach to mining significant subgraphs in large graph databases[C]//2009 IEEE 25th International Conference on Data Engineering. 2009: 844-855.
    [9]
    CHENG H, YAN X F, HAN J W. Mining graph patterns[C]//Frequent Pattern Mining, Berlin: Springer, 2014: 307-338.
    [10]
    KRISHNA V, SURI N R, ATHITHAN G. A comparative survey of algorithms for frequent subgraph discovery[J]. Current Science, 2011, :190-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000074023
    [11]
    CHOUDHURY S, PUROHIT S, LIN P, et al. Percolator: Scalable pattern discovery in dynamic graphs[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018: 759-762.
    [12]
    INGALALLI V, IENCO D, PONCELET P. Mining frequent subgraphs in multigraphs[J]. Information Sciences, 2018, 451/452:50-66. doi:  10.1016/j.ins.2018.04.001
    [13]
    ALGULIEV R M, ALIGULIYEV R M, GANJALIYEV F S. Extracting a heterogeneous social network of academic researchers on the Web based on information retrieved from multiple sources[J]. American Journal of Operations Research, 2011, 1(2):33. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d1a43f69b12775f8e61ed6f03a30c453
    [14]
    LIMA JR D P, GIACOMINI H C, TAKEMOTO R M, et al. Patterns of interactions of a large fish-parasite network in a tropical floodplain[J]. Journal of Animal Ecology, 2012, 81(4):905-913.. doi:  10.1111/j.1365-2656.2012.01967.x
    [15]
    GAO X B, XIAO B, TAO D C, et al. A survey of graph edit distance[J]. Pattern Analysis and Applications, 2010, 13(1):113-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23f1c6b1111f176881d00ede280bb4eb
    [16]
    HIDOVIĆ D, PELILLO M. Metrics for attributed graphs based on the maximal similarity common subgraph[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3):299-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26e34f94bfb8adc8f71be64ac36fc57c
    [17]
    DEHMER M, EMMERT-STREIB F. Comparing large graphs efficiently by margins of feature vectors[J]. Applied Mathematics and Computation, 2007, 188(2):1699-1710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb5b4f11bfe4a7efbf2a637396f786e0
    [18]
    HOLDER L B, COOK D J, DJOKO S. Substucture discovery in the SUBDUE system[C]//KDD Workshop, 1994: 169-180.
    [19]
    JIA Y, ZHANG J T, HUAN J. An efficient graph-mining method for complicated and noisy data with real-world applications[J]. Knowledge and Information Systems, 2011, 28(2):423-447. doi:  10.1007/s10115-010-0376-y
    [20]
    FLORES-GARRIDO M, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F. Extensions to AGraP algorithm for finding a reduced set of inexact graph patterns[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(1):1860012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6062c7c25d7e6f97c25cd19da9333d5c
    [21]
    ACOSTA-MENDOZA N, GAGO-ALONSO A, CARRASCO-OCHOA J A, et al. Extension of canonical adjacency matrices for frequent approximate subgraph mining on multi-graph collections[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(8):1750025. doi:  10.1142/S0218001417500252
    [22]
    ACOSTA-MENDOZA N, MORALES-GONZáLEZ A, GAGO-ALONSO A, et al. Image classification using frequent approximate subgraphs[C]//Iberoamerican Congress on Pattern Recognition. 2012: 292-299.
    [23]
    ACOSTA-MENDOZA N, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F, et al. Image clustering based on frequent approximate subgraph mining[C]//Mexican Conference on Pattern Recognition. 2018: 189-198.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (165) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return