中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIU Bo, BAI Xiaodong, ZHANG Gengxin, SHEN Jun, XIE Jidong, ZHAO Laiding, HONG Tao. Review of deep learning in cognitive radio[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 36-52. doi: 10.3969/j.issn.1000-5641.201922017
Citation: LIU Bo, BAI Xiaodong, ZHANG Gengxin, SHEN Jun, XIE Jidong, ZHAO Laiding, HONG Tao. Review of deep learning in cognitive radio[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 36-52. doi: 10.3969/j.issn.1000-5641.201922017

Review of deep learning in cognitive radio

doi: 10.3969/j.issn.1000-5641.201922017
  • Received Date: 2019-11-16
    Available Online: 2020-06-06
  • Publish Date: 2021-01-27
  • The development of wireless communication has made spectrum resources increasingly scarce. Existing spectrum resources, however, are not currently used in an efficient way. This contradiction can usually be attributed to the problem created by static spectrum allocation strategies. Cognitive radio (CR) is widely regarded as a feasible solution to solve the problem of static spectrum allocation. In recent years, deep learning, an emerging field of machine learning, has contributed to a number of notable research and application achievements. It has become one of the driving technologies behind artificial intelligence. In this paper, we investigated the application of deep learning to CR; this includes the development of cognitive radio and deep learning as well as the usage of deep learning models in key technologies for CR (such as spectrum prediction, spectrum environment sensing, signal analysis, etc.). Lastly, we summarize and discuss conclusions from this review.
  • loading
  • [1]
    武秀广, 宋旭, 任培明. 认知无线电关键技术及应用 [J]. 数字通信世界, 2014(2): 57-60. DOI:  10.3969/j.issn.1672-7274.2014.02.013.
    [2]
    TANDRA R, SAHAI A. Fundamental limits on detection in low SNR under noise uncertainty [C]//2005 International Conference on Wireless Networks, Communications and Mobile Computing. IEEE, 2005(1): 464-469. DOI: 10.1109/WIRLES.2005.1549453.
    [3]
    MITOLA J, MAGUIRE G Q. Cognitive radio: Making software radios more personal [J]. Software Radio Technologies: Selected Readings, 1999, 6(4): 413-418.
    [4]
    WU Q H, DING G R, WANG J L, et al. Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing [J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 516-526. DOI:  10.1109/TWC.2012.122212.111638.
    [5]
    HAYKIN S. Cognitive radio: Brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220. DOI:  10.1109/JSAC.2004.839380.
    [6]
    郭永明, 李军芳, 李宁. 未来智能无线电将对频谱管理带来深刻影响 [J]. 电信科学, 2012, 28(7): 14-15.
    [7]
    DONG X, LI Y, WEI S Q. Design and implementation of a cognitive engine functional architecture [J]. Chinese Science Bulletin, 2012, 57(28): 3698-3704. DOI:  10.1007/s11434-012-5102-6.
    [8]
    CLANCY C, HECKER J, STUNTEBECK E, et al. Applications of machine learning to cognitive radio networks [J]. IEEE Wireless Communications, 2007, 14(4): 47-52. DOI:  10.1109/MWC.2007.4300983.
    [9]
    HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-508. DOI:  10.1126/science.1127647.
    [10]
    陈远哲, 匡俊, 刘婷婷, 等. 共指消解技术综述 [J]. 华东师范大学学报(自然科学版), 2019(5): 16-35. DOI:  10.3969/j.issn.1000-5641.2019.05.002.
    [11]
    ZHANG M, DIAO M, GUO L M. Convolutional neural networks for automatic cognitive radio waveform recognition [J]. IEEE Access, 2017(5): 11074-11082. DOI:  10.1109/ACCESS.2017.2716191.
    [12]
    YASHASHWI K, SETHI A, CHAPORKAR P. A learnable distortion correction module for modulation recognition [J]. IEEE Wireless Communications Letters, 2019, 8(1): 77-80. DOI:  10.1109/LWC.2018.2855749.
    [13]
    GAO L, ZHANG X, GAO J, et al. Fusion image based radar signal feature extraction and modulation recognition [J]. IEEE Access, 2019(7): 13135-13148. DOI:  10.1109/ACCESS.2019.2892526.
    [14]
    WANG Y, LIU M, YANG J, et al. Data-driven deep learning for automatic modulation recognition in cognitive radios [J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4074-4077. DOI:  10.1109/TVT.2019.2900460.
    [15]
    ZHANG Q, XU Z, ZHANG P. Modulation recognition using wavelet-assisted convolutional neural network [C]//International Conference on Advanced Technologies for Communications. IEEE, 2018: 100-104.
    [16]
    HIREMATH S M, DESHMUKH S, RAKESH R. Blind identification of radio access techniques based on time-frequency analysis and convolutional neural network [C]//TENCON 2018 − 2018 IEEE Region 10 Conference. IEEE, 2018: 1163-1167.
    [17]
    WU H, LI Y, ZHOU L, et al. Convolutional neural network and multi-feature fusion for automatic modulation classification [J]. Electronics Letters, 2019, 55(16): 895-897. DOI:  10.1049/el.2019.1789.
    [18]
    GU H, WANG Y, HONG S, et al. Blind channel identification aided generalized automatic modulation recognition based on deep learning [J]. IEEE Access, 2019(7): 110722-110729. DOI:  10.1109/ACCESS.2019.2934354.
    [19]
    YANG X. Fusion methods for CNN-based automatic modulation classification [J]. IEEE Access, 2019(7): 66496-66504. DOI:  10.1109/ACCESS.2019.2918136.
    [20]
    WANG D, ZHANG M, LI J, et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning [J]. Optics Express, 2017, 25(15): 17150-17166. DOI:  10.1364/OE.25.017150.
    [21]
    O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks 2016: Engineering Applications of Neural Networks. Cham: Springer, 2016: 213-226..
    [22]
    LI R, LI L, YANG S, et al. Robust automated VHF modulation recognition based on deep convolutional neural networks [J]. IEEE Communications Letters, 2018, 22(5): 946-949. DOI:  10.1109/LCOMM.2018.2809732.
    [23]
    YONGSHI W, JIE G, HAO L, et al. CNN-based modulation classification in the complicated communication channel [C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 2017: 512-516.
    [24]
    NADEEM F, HOON C, GUONG S, et al. Automatic modulation format / bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling [J]. Computers and Electrical Engineering, Elsevier Ltd., 2015, 47: 126-133. DOI:  10.1016/j.compeleceng.2015.09.005.
    [25]
    PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model [C]//2017 26th Wireless and Optical Communication Conference (WOCC). IEEE, 2017. DOI: 10.1109/WOCC.2017.7929000.
    [26]
    SADEGHI M, LARSSON E G. Adversarial attacks on deep-learning based radio signal classification [J]. IEEE Wireless Communications Letters, 2019, 8(1): 213-216. DOI:  10.1109/LWC.2018.2867459.
    [27]
    ZHANG Y, LIU T, ZHANG L B, et al. A deep learning approach for modulation recognition [C]//2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE, 2018. DOI:  10.1109/ICDSP.2018.8631811.
    [28]
    MENDIS G J, WEI J, MADANAYAKE A. Deep learning-based automated modulation classification for cognitive radio [C]//2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016. DOI:  10.1109/ICCS.2016.7833571.
    [29]
    MENDIS G J, WEI J, MADANAYAKE A. Deep belief network for automated modulation classification in cognitive radio [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI:  10.1109/CCAAW.2017.8001609.
    [30]
    HONG D H, ZHANG Z L, XU X D. Automatic modulation classification using recurrent neural networks [C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017: 695-700. DOI:  10.1109/CompComm.2017.8322633.
    [31]
    RAJENDRAN S, MEMBER S, MEERT W, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors [J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445. DOI:  10.1109/TCCN.2018.2835460.
    [32]
    WEST N E, O’HEA T. Deep architectures for modulation recognition [C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. DOI:  10.1109/DySPAN.2017.7920754.
    [33]
    TANG B, TU Y, ZHANG Z, et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks [J]. IEEE Access, 2018(6): 15713-15722. DOI:  10.1109/ACCESS.2018.2815741.
    [34]
    LI J, QI L, LIN Y, et al. Research on modulation identification of digital signals based on deep learning [C]//2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2016: 402-405.
    [35]
    DAI A, ZHANG H, SUN H. Automatic modulation classification using stacked sparse auto-encoders [C]//2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016: 248-252.
    [36]
    YU L, CHEN J, DING G R, et al. Spectrum prediction based on taguchi method in deep learning with long short-term memory [J]. IEEE Access, 2018(6): 45923-45933. DOI:  10.1109/ACCESS.2018.2864222.
    [37]
    HERNÁNDEZ J, LÓPEZ D, VERA N. Primary user characterization for cognitive radio wireless networks using long short-term memory [J]. International Journal of Distributed Sensor Networks, 2018, 14(11). DOI: 10.1177/1550147718811828.
    [38]
    ZUO P L, WANG X, LINGHU W D, et al. Prediction-based spectrum access optimization in cognitive radio networks [C]//2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018. DOI:  10.1109/PIMRC.2018.8580726.
    [39]
    YU L, CHEN J, DING G R. Spectrum prediction via long short term memory [C]//2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017. IEEE, 2018: 643-647.
    [40]
    AGARWAL A, DUBEY S, KHAN M A, et al. Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access [C]//2016 International Conference on Signal Processing and Communications, SPCOM 2016. IEEE, 2016. DOI:  10.1109/SPCOM.2016.7746632.
    [41]
    SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Deep-learning based cooperative spectrum prediction for cognitive networks [C]//2018 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2018: 133-137. DOI: 10.1109/ICTC.2018.8539570.
    [42]
    SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Convolutional LSTM-based long-term spectrum prediction for dynamic spectrum access [C]// 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. DOI: 10.23919/EUSIPCO.2019.8902956.
    [43]
    OMOTERE O, FULLER J, QIAN L J, et al. Spectrum occupancy prediction in coexisting wireless systems using deep learning [C]//2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018. DOI: 10.1109/VTCFall.2018.8690575.
    [44]
    ROY D, MUKHERJEE T, CHATTERJEE M, et al. Primary user activity prediction in DSA networks using recurrent structures [C]//2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2019. DOI: 10.1109/DySPAN.2019.8935716.
    [45]
    YU L X, WANG Q L, GUO Y F, et al. Spectrum availability prediction in cognitive aerospace communications: A deep learning perspective [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI: 10.1109/CCAAW.2017.8001877.
    [46]
    YU L, CHEN J, ZHANG Y, et al. Deep spectrum prediction in high frequency communication based on temporal-spectral residual network [J]. China Communications, 2018, 15(9): 25-34. DOI:  10.1109/CC.2018.8456449.
    [47]
    AGARWAL A, GANGOPADHYAY R. Predictive spectrum occupancy probability-based spatio-temporal dynamic channel allocation map for future cognitive wireless networks [J]. Transactions on Emerging Telecommunications Technologies, 2018, 29(8): e3442. DOI:  10.1002/ett.3442.
    [48]
    TANG Z L, LI S M. Deep recurrent neural network for multiple time slot frequency spectrum predictions of cognitive radio [J]. KSII Transactions on Internet and Information Systems, 2017, 11(6): 3029-3045. DOI:  10.3837/tiis.2017.06.013.
    [49]
    DO V Q, KOO I. Learning frameworks for cooperative spectrum sensing and energy-efficient data protection in cognitive radio networks [J]. Applied Sciences, 2018, 8(5): 722-745. DOI:  10.3390/app8050722.
    [50]
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks [J]. IEEE Journal on Selected Topics in Signal Processing, 2018, 12(1): 160-167. DOI:  10.1109/JSTSP.2018.2796446.
    [51]
    LIU H, ZHU X, FUJII T. Adversarial training for low-complexity convolutional neural networks using in spectrum sensing [C]//2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019: 478-483. DOI:  10.1109/ICAIIC.2019.8668844.
    [52]
    HAN D, SOBABE G C, ZHANG C J, et al. Spectrum sensing for cognitive radio based on convolution neural network [C]//2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. DOI: 10.1109/CISP-BMEI.2017.8302117.
    [53]
    LEE W, KIM M, CHO D H. Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks [J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3005-3009. DOI:  10.1109/TVT.2019.2891291.
    [54]
    LIU C, WANG J, LIU X M, et al. Deep CM-CNN for spectrum sensing in cognitive radio [J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2306-2321. DOI:  10.1109/JSAC.2019.2933892.
    [55]
    XIE J D, LIU C, LIANG Y C, et al. Activity pattern aware spectrum sensing: A CNN-based deep learning approach [J]. IEEE Communications Letters, 2019, 23(6): 1025-1028. DOI:  10.1109/LCOMM.2019.2910176.
    [56]
    CUI Y H, JING X J, SUN S L, et al. Deep learning based primary user classification in cognitive radios [C]//2015 15th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2015: 165-168. DOI:  10.1109/ISCIT.2015.7458333.
    [57]
    SUN X K, GAO L, LUO X D, et al. RBM based cooperative Bayesian compressive spectrum sensing with adaptive threshold [C]//2016 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2016. DOI: 10.1109/ICCChina.2016.7636844
    [58]
    TANG Y J, ZHANG Q Y, LIN W. Artificial neural network based spectrum sensing method for cognitive radio [C]//2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). IEEE, 2010. DOI: 10.1109/WICOM.2010.5601105.
    [59]
    KE D, HUANG Z T, WANG X, et al. Blind detection techniques for non-cooperative communication signals based on deep learning [J]. IEEE Access, 2019(7): 89218-89225. DOI:  10.1109/ACCESS.2019.2926296.
    [60]
    LEE W. Resource allocation for multi-channel underlay cognitive radio network based on deep neural network [J]. IEEE Communications Letters, IEEE, 2018, 22(9): 1942-1945. DOI:  10.1109/LCOMM.2018.2859392.
    [61]
    DU Y H, ZHANG F, XUE L. A kind of joint routing and resource allocation scheme based on prioritized memories-deep Q network for cognitive radio ad hoc networks [J]. Sensors, 2018, 18(7): 2119-2139. DOI:  10.3390/s18072119.
    [62]
    WANG S, LIU H, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks [J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257-265. DOI:  10.1109/TCCN.2018.2809722.
    [63]
    LAWRENCE S, GILES C L, AH CHUNG TSOI, et al. Face recognition: A convolutional neural-network approach [J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. DOI:  10.1109/72.554195.
    [64]
    LECUN Y, FU JIE HUANG, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004. IEEE, 2004(2): 97-104.
    [65]
    ABDEL-HAMID O, MOHAMED A, JIANG H, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition [C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012: 4277-4280. DOI:  10.1109/ICASSP.2012.6288864.
    [66]
    ABDEL-HAMID O, MOHAMED A, JIANG H, et al. Convolutional neural networks for speech recognition [J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545. DOI:  10.1109/TASLP.2014.2339736.
    [67]
    NIU X X, SUEN C Y. A novel hybrid CNN-SVM classifier for recognizing handwritten digits [J]. Pattern Recognition, 2012, 45(4): 1318-1325. DOI:  10.1016/j.patcog.2011.09.021.
    [68]
    LAUER F, SUEN C Y, BLOCH G. A trainable feature extractor for handwritten digit recognition [J]. Pattern Recognition, 2007, 40(6): 1816-1824. DOI:  10.1016/j.patcog.2006.10.011.
    [69]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI:  10.1109/5.726791.
    [70]
    HAUSER S C, HEADLEY W C, MICHAELS A J. Signal detection effects on deep neural networks utilizing raw IQ for modulation classification [C]// MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). IEEE, 2017: 121-127. DOI:  10.1109/MILCOM.2017.8170853.
    [71]
    O’SHEA T J, HOYDIS J. An introduction to deep learning for the physical layer [J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563-575. DOI:  10.1109/TCCN.2017.2758370.
    [72]
    SAHAI A, TANDRA R, MISHRA S M, et al. Fundamental design tradeoffs in cognitive radio systems[C]// Proceedings of the 1rst International Workshop on Technology and Policy for Accessing Spectrum. ACM, 2006. DOI: 10.1145/1234388.1234390.
    [73]
    郭彩丽, 张天魁, 曾志民, 等. 认知无线电关键技术及应用的研究现状 [J]. 电信科学, 2006(8): 50-55. DOI:  10.3969/j.issn.1000-0801.2006.08.013.
    [74]
    曾英, 李志勇, 张春平, 等. 新型协作频谱感知系统检测性能优化策略[J]. 华东师范大学学报(自然科学版), 2016(3): 84-91.
    [75]
    JIN S, ZHANG X. Compressive spectrum sensing for MIMO-OFDM based cognitive radio networks [C]//2015 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2015: 2197-2202.
    [76]
    JAFAR A, SRINIVASA S. The throughput potential of cognitive radio [J]. IEEE Communications Magazine, 2007, 45(5): 73-79. DOI:  10.1109/MCOM.2007.358852.
    [77]
    SON K, JUNG B C, CHONG S, et al. Power allocation for OFDM-based cognitive radio systems under outage constraints [C]//2010 IEEE International Conference on Communications. IEEE, 2010. DOI: 10.1109/ICC.2010.5501790.
    [78]
    YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems [J]. IEEE Wireless Communications Letters, 2018, 7(1): 114-117. DOI:  10.1109/LWC.2017.2757490.
    [79]
    GALINDO-SERRANO A, GIUPPONI L. Distributed Q-learning for aggregated interference control in cognitive radio networks [J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1823-1834. DOI:  10.1109/TVT.2010.2043124.
    [80]
    VENKATRAMAN P, HAMDAOUI B, GUIZANI M. Opportunistic bandwidth sharing through reinforcement learning [J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 3148-3153. DOI:  10.1109/TVT.2010.2048766.
    [81]
    LUND J. Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks [C]//2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2011: 642-646.
    [82]
    WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. JMLR, 2016: 1995-2003.
    [83]
    刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27.
    [84]
    VOEGTLIN T, DOMINEY P F. Linear recursive distributed representations [J]. Neural Networks, 2005, 18(7): 878-895. DOI:  10.1016/j.neunet.2005.01.005.
    [85]
    LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. DOI:  10.1038/nature14539.
    [86]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:  10.1162/neco.1997.9.8.1735.
    [87]
    MACKAY D J C. A practical Bayesian framework for backpropagation networks [J]. Neural Computation, 1992, 4(3): 448-472. DOI:  10.1162/neco.1992.4.3.448.
    [88]
    UTSUGI A. Hyperparameter selection for self-organizing maps [J]. Neural Computation, 1997, 9(3): 623-635. DOI:  10.1162/neco.1997.9.3.623.
    [89]
    GRAHAM B M, ADLER A. Objective selection of hyperparameter for EIT [J]. Physiological Measurement, 2006, 27(5): S65-S79. DOI:  10.1088/0967-3334/27/5/S06.
    [90]
    CHEN Z, GUO N, HU Z, et al. Experimental validation of channel state prediction considering delays in practical cognitive radio [J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1314-1325. DOI:  10.1109/TVT.2011.2116051.
    [91]
    LIN Z J, JIANG X Y, HUANG L F, et al. A energy prediction based spectrum sensing approach for cognitive radio networks [C]//2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2009. DOI:  10.1109/WICOM.2009.5302514.
    [92]
    CHEN Z. Channel state prediction in cognitive radio [C]// Cognitive Radio and Interference Management Technology and Strategy, 2012(15): 273-288. DOI:  10.4018/978-1-4666-2005-6.ch015.
    [93]
    WANG L C, WANG C W, CHANG C J. Modeling and analysis for spectrum handoffs in cognitive radio networks [J]. IEEE Transactions on Mobile Computing, 2012, 11(9): 1499-1513. DOI:  10.1109/TMC.2011.155.
    [94]
    DING G R, WANG J L, WU Q H, et al. On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing [J]. IEEE Communications Magazine, 2015, 53(7): 178-183. DOI:  10.1109/MCOM.2015.7158283.
    [95]
    XING X, JING T, CHENG W, et al. Spectrum prediction in cognitive radio networks [J]. IEEE Wireless Communications, 2013, 20(2): 90-96. DOI:  10.1109/MWC.2013.6507399.
    [96]
    ELTOM H, KANDEEPAN S, EVANS R J, et al. Statistical spectrum occupancy prediction for dynamic spectrum access: A classification [J]. EURASIP Journal on Wireless Communications and Networking, 2018(1): Article number 29. DOI:  10.1186/s13638-017-1019-8.
    [97]
    HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. DOI:  10.1162/neco.2006.18.7.1527.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (735) PDF downloads(134) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return