中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 2
Mar.  2021
Turn off MathJax
Article Contents
CHEN Zihan, HUANG Ying, TANG Jianwu, TIAN Bo, SHEN Fang, WU Pengfei, YUAN Qing, ZHOU Cheng, WANG Jiangtao. Flux footprint analysis of a salt marsh ecosystem in the Jiuduansha Shoals of the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 42-53. doi: 10.3969/j.issn.1000-5641.2021.02.005
Citation: CHEN Zihan, HUANG Ying, TANG Jianwu, TIAN Bo, SHEN Fang, WU Pengfei, YUAN Qing, ZHOU Cheng, WANG Jiangtao. Flux footprint analysis of a salt marsh ecosystem in the Jiuduansha Shoals of the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 42-53. doi: 10.3969/j.issn.1000-5641.2021.02.005

Flux footprint analysis of a salt marsh ecosystem in the Jiuduansha Shoals of the Changjiang Estuary

doi: 10.3969/j.issn.1000-5641.2021.02.005
  • Received Date: 2019-10-25
  • Publish Date: 2021-03-30
  • Flux footprint analysis is an important step in studying the carbon, water vapor, and heat flux exchange of land-atmosphere interactions based on the eddy covariance (EC) method. In this research, we used the flux source area model (FSAM) to investigate seasonal flux footprints with different wind directions and atmospheric conditions on the basis of half-hourly EC measurements throughout 2018. The results showed that: ① The flux footprint area changes with the seasons. The largest flux footprint area, ordered highest to lowest, was found in autumn, summer, spring, and winter under stable stratification; meanwhile, under unstable stratification, the flux footprint area did not change significantly between seasons. The daily variation in the footprint, moreover, was obvious and the footprint was found to be larger comparatively at nighttime than that observed during the daytime. ② The flux source area under non-prevailing wind conditions was larger than that under the prevailing wind condition. ③ The flux source area was much larger under stable stratification. The distance between the location of the maximum value of the flux footprint and the station was also found to be much larger under stable stratification.
  • loading
  • [1]
    BALDOCCHI D, MEYERS T P. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation [J]. Agricultural and Forest Meteorology, 1998, 90(1): 1-25.
    [2]
    王江涛, 周剑虹, 欧强, 等. 崇明东滩滨海围垦湿地CO2通量贡献区分析 [J]. 生态与农村环境学报, 2014, 30(5): 588-594.
    [3]
    伍琼. 淮河流域农田近地层湍流通量特征研究 [D]. 合肥: 安徽农业大学, 2009.
    [4]
    FOKEN T, WICHURA B. Tools for quality assessment of surface-based flux measurements [J]. Agricultural and Forest Meteorology, 1996, 78(1/2): 83-105.
    [5]
    SCHMID H P. Experimental design for flux measurements: Matching scales of observations and fluxes [J]. Agricultural and Forest Meteorology, 1997, 87(2/3): 179-200.
    [6]
    RANNIK U, AUBINET M, KURBANMURADOV O, et al. Footprint analysis for measurements over a heterogeneous forest [J]. Boundary-Layer Meteorology, 2000, 97(1): 137-166.
    [7]
    SCHUEPP P H, LECLERC M Y, MACPHERSON J I, et al. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation [J]. Boundary-Layer Meteorology, 1990, 50(1): 353-373.
    [8]
    袁庄鹏, 赵敏. 基于FSAM模型的城市碳通量观测贡献区研究 [J]. 上海师范大学学报(自然科学版), 2012, 41(5): 533-539.
    [9]
    于贵瑞, 孙晓敏, 王绍强, 等. 陆地生态系统通量观测的原理与方法 [M]. 2 版. 北京: 高等教育出版社, 2017: 241-259.
    [10]
    张慧. 中亚热带人工林碳水通量贡献区的评价研究 [D]. 南京: 南京信息工程大学, 2012.
    [11]
    GOCKEDE M, REBMANN C, FOKEN T. A. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterization of complex sites [J]. Agricultural and Forest Meteorology, 2004, 127(3/4): 175-188.
    [12]
    SCHMID H P, OKE T R. A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain [J]. Quarterly Journal of the Royal Meteorological Society, 1990, 116(494): 965-988.
    [13]
    FLESCH T K. The footprint for flux measurements, from backward lagrangian stochastic models [J]. Boundary-Layer Meteorology, 1996, 78(3/4): 399-404.
    [14]
    LECLERC M Y, SHEN S, LAMB B. Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D8): 9323-9334.
    [15]
    HOREST T W, WEIL J C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes [J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1018-1025.
    [16]
    SCHMID H P. Source areas for scalars and scalar fluxes [J]. Boundary-Layer Meteorology, 1994, 67(3): 293-318.
    [17]
    ZHANG H, WEN X F. Flux footprint climatology estimated by three analytical models over a subtropical coniferous plantation in southeast China [J]. Journal of Meteorological Research, 2015, 29(4): 654-666.
    [18]
    魏远, 高升华, 张旭东, 等. 基于FSAM模型的岳阳地区美洲黑杨人工林通量观测源区分布 [J]. 林业科学, 2012, 48(2): 16-21.
    [19]
    周梅, 郑伟, 高全洲. 珠海城郊草地通量源区分析 [J]. 中山大学学报(自然科学版), 2018, 57(3): 24-33.
    [20]
    刘钰. 九段沙植被分布区碳汇功能评估 [D]. 上海: 华东师范大学, 2013
    [21]
    贾建伟, 王磊, 唐玉姝, 等. 九段沙不同演替阶段湿地土壤微生物呼吸的差异性及其影响因素 [J]. 生态学报, 2010, 30(17): 4529-4538.
    [22]
    许宇田, 童春富. 长江口九段沙湿地海三棱藨草生物量分配特征及其影响因子 [J]. 生态学报, 2018, 38(19): 7034-7044.
    [23]
    龚元, 赵敏, 姚鑫, 等. 城市生态系统复合下垫面碳通量特征—以上海市奉贤大学城为例 [J]. 长江流域资源与环境, 2017, 26(1): 91-99.
    [24]
    GRIMMOND C S, KING T S, CROPLEY F D, et al. Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago [J]. Environments Pollution, 2002, 116(S1): S243-S254.
    [25]
    CAMPBELL G S. An Introduction to Environmental Biophysics [M]. New York: Springer, 1997: 155.
    [26]
    KLJUN N, CALANCA P, ROTACH M W, et al. A simple two-dimensional parameterization for Flux Footprint Prediction (FFP) [J]. Geosci Model Dev, 2015(8): 3695-3713.
    [27]
    顾永剑, 高宇, 郭海强, 等. 崇明东滩湿地生态系统碳通量贡献区分析 [J]. 复旦学报(自然科学版), 2008(3): 374-379.
    [28]
    龚笑飞, 陈丽萍, 莫路锋. 基于FSAM模型的毛竹林碳通量贡献区研究 [J]. 西南林业大学学报, 2015, 35(6): 37-44.
    [29]
    吴东星, 李国栋, 张茜. 华北平原冬小麦农田生态系统通量贡献区 [J]. 应用生态学报, 2017, 28(11): 3663-3674.
    [30]
    刘郁珏, 胡非, 程雪玲, 等. 北京城市通量足迹及源区分布特征分析 [J]. 大气科学, 2014, 38(6): 1044-1054.
    [31]
    吴志祥, 陈帮乾, 杨川, 等. 海南岛橡胶林通量足迹与源区分布研究 [J]. 热带生物学报, 2012, 3(1): 42-50.
    [32]
    周琪, 李平衡, 王权, 等. 西北干旱区荒漠生态系统通量贡献区模型研究 [J]. 中国沙漠, 2014, 34(1): 98-107.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (115) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return