中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 2
Mar.  2021
Turn off MathJax
Article Contents
ZHU Yiping, LI Xiaofei, LIANG Xia. Content and ecological risk assessment of heavy metals in the surface sediments of Qingcaosha Reservoir in Shanghai[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 54-62. doi: 10.3969/j.issn.1000-5641.2021.02.006
Citation: ZHU Yiping, LI Xiaofei, LIANG Xia. Content and ecological risk assessment of heavy metals in the surface sediments of Qingcaosha Reservoir in Shanghai[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 54-62. doi: 10.3969/j.issn.1000-5641.2021.02.006

Content and ecological risk assessment of heavy metals in the surface sediments of Qingcaosha Reservoir in Shanghai

doi: 10.3969/j.issn.1000-5641.2021.02.006
  • Received Date: 2020-03-16
  • Publish Date: 2021-03-30
  • Surface sediments were collected from five representative areas—the floodgate entrance, the north and south sides of the reclamation area, and the central and downstream sections—of Qingcaosha Reservoir; the pollution characteristics and potential ecological risk of seven heavy metals (Cu, Zn, Pb, Cr, Cd, As and Hg) in these sediments were subsequently investigated. Results showed that the heavy metal content in the surface sediments showed spatial variations: the content was relatively higher in the center of the reservoir and was low in the north and south sides of the reclamation area. Heavy metals in the surface sediments, in addition, were mainly in the residual fraction; the content of heavy metals in the exchangeable fraction was extremely low. A potential ecological risk assessment indicated that the comprehensive potential ecological risk index (ERI) of the investigated heavy metals ranged from 55 to 113. The maximum ERI value was observed around the floodgate of the reservoir entrance, and low ERI values were observed at the north and south sides of the reclamation area. The ERI was lower than the threshold for low ecological risk, indicating that heavy metals in the surface sediments of the Qingcaosha Reservoir have low potential ecological risk.
  • loading
  • [1]
    李佳璐, 姜霞, 王书航, 等. 丹江口水库沉积物重金属形态分布特征及其迁移能力 [J]. 中国环境科学, 2016, 36(4): 1207-1217.
    [2]
    李晋鹏, 成登苗, 赵爱东, 等. 澜沧江梯级水坝库区沉积物重金属和营养盐污染特征及评价 [J]. 环境科学学报, 2019, 39(8): 2791-2799.
    [3]
    韦丽丽, 周琼, 谢从新, 等. 三峡库区重金属的生物富集、生物放大及其生物因子的影响 [J]. 环境科学, 2016, 37(1): 325-334.
    [4]
    张文慧, 许秋瑾, 胡小贞, 等. 山美水库沉积物重金属污染状况及风险评价 [J]. 环境科学研究, 2016, 29(7): 1006-1013.
    [5]
    VAROL M, SÜNBÜL M R. Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey [J]. Environmental Pollution, 2017, 230: 311-319.
    [6]
    FRÉMION F, COURTIN-NOMADE A, BORDAS F, et al. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management [J]. Science of the Total Environment, 2016, 562: 201-215.
    [7]
    王闯, 单保庆, 唐文忠, 等. 官厅水库主要入库河流(洋河)表层沉积物重金属污染特征及风险水平 [J]. 环境科学学报, 2017, 37(5): 1632-1640.
    [8]
    ZHU H, BING H, WU Y, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation [J]. Science of the Total Environment, 2019, 664: 79-88.
    [9]
    SHIKAZONO N, TATEWAKI K, MOHIUDDIN K, et al. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan [J]. Environmental Geochemistry and Health, 2012, 34(1): 13-26.
    [10]
    孔明, 彭福全, 张毅敏, 等. 环巢湖流域表层沉积物重金属赋存特征及潜在生态风险评价 [J]. 中国环境科学, 2015, 35(6): 1863-1871.
    [11]
    张伯镇, 王丹, 张洪, 等. 官厅水库沉积物重金属沉积通量及沉积物记录的生态风险变化规律 [J]. 环境科学学报, 2016, 36(2): 458-465.
    [12]
    李冰, 王亚, 郑钊, 等. 丹江口水库调水前后表层沉积物营养盐和重金属时空变化 [J]. 环境科学, 2018, 39(8): 3591-3600.
    [13]
    张茜, 冯民权, 郝晓燕. 漳泽水库沉积物重金属污染特征与生态风险评价 [J]. 环境工程, 2019(1): 11-17.
    [14]
    匡帅, 保琦蓓, 康得军, 等. 典型小型水库表层沉积物重金属分布特征及生态风险 [J]. 湖泊科学, 2018, 30(2): 336-348.
    [15]
    JHÉNELLE A W, JOHANN A. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index [J]. Marine Pollution Bulletin, 2020, 157: 111288.
    [16]
    陈明, 蔡青云, 徐慧, 等. 水体沉积物重金属污染风险评价研究进展 [J]. 生态环境学报, 2015, 24(6): 1069-1074.
    [17]
    陈立, 陈蓓蓓, 张淑敏. 青草沙水库运行管理优化探索 [J]. 净水技术, 2013, 32(3): 85-88.
    [18]
    袁建忠, 李杰. 青草沙水库库区流态及淤积分布特征研究 [J]. 城市道桥与防洪, 2012(9): 181-183.
    [19]
    孙远军, 林卫青, 卢士强, 等. 青草沙水库底泥磷营养盐释放规律的初步研究 [J]. 环境科技, 2013, 26(5): 18-21.
    [20]
    金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性 [J]. 环境科学, 2015, 36(2): 448-456.
    [21]
    胡晓婷, 程吕, 林贤彪, 等. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素—以长江口青草沙水库为例 [J]. 中国环境科学, 2016, 36(9): 2624-2632.
    [22]
    徐聪. 典型河口水库痕量有机污染物赋存特征及其迁移转化模拟研究 [D]. 上海: 上海交通大学, 2018.
    [23]
    吴雪飞, 倪奔. 青草沙水库底泥重金属含量分析与评价 [J]. 净水技术, 2018, 37(S2): 5-8.
    [24]
    HAKANSON L. An ecological risk index for aquatic pollution control [J]. Water Research, 1980, 14(8): 975-1001.
    [25]
    何中发. 长江口及近岸海域沉积物元素地球化学背景值 [J]. 上海国土资源, 2018, 39(1): 75-79.
    [26]
    李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价 [J]. 环境科学, 2015, 36(3): 1037-1044.
    [27]
    张志, 张润宇, 王立英, 等. 淡水沉积物中重金属生物有效性的研究进展 [J]. 地球与环境, 2020, 48(3): 385-394.
    [28]
    乔敏敏, 季宏兵, 朱先芳, 等. 密云水库入库河流沉积物中重金属形态分析及风险评价 [J]. 环境科学学报, 2013, 33(12): 3324-3333.
    [29]
    杨丹, 谢宗强, 樊大勇, 等. 三峡水库蓄水对消落带土壤Cu、Zn、Cr、Cd含量的影响 [J]. 自然资源学报, 2018, 33(7): 1283-1290.
    [30]
    陈蓓蓓, 张淑敏, 朱建荣. 陈行水库底泥中重金属含量分析与评价 [J]. 中国给水排水, 2015, 31(13): 68-71.
    [31]
    程晨, 陈振楼, 毕春娟, 等. 上海市黄浦江水源地重金属铅、镉多介质富集特征分析 [J]. 长江流域资源与环境, 2009, 18(10): 948-953.
    [32]
    郑玲芳. 黄浦江水源地沉积物重金属潜在生态风险评价 [J]. 生态与农村环境学报, 2013, 29(6): 762-767.
    [33]
    何中发, 杨守业, 赵宝成, 等. 长江口地区近 1500年以来沉积物重金属含量变化及其对流域环境响应 [J]. 海洋地质与第四纪地质, 2019, 39(2): 21-30.
    [34]
    许小丽, 周国亮, 丁井井, 等. 长兴岛潮间带表层沉积物污染状况及其潜在生态风险评价 [J]. 海洋通报, 2012, 31(2): 223-227.
    [35]
    蔡晔, 林休休. 长江三角洲近岸水域表层沉积物重金属分布特征及其影响因子 [J]. 水土保持研究, 2017, 24(3): 331-338.
    [36]
    刘珊珊, 张勇, 龚淑云, 等. 长江三角洲经济区海域沉积物重金属分布特征及环境质量评价 [J]. 海洋地质与第四纪地质, 2013, 33(5): 63-71.
    [37]
    顾家伟. 长江三角洲潮滩重金属污染研究现状与趋势 [J]. 地球与环境, 2014, 42(6): 801-809.
    [38]
    DAVIDSON C M, THOMAS R P, MCVEY S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments [J]. Analytica Chimica Acta, 1994, 291(3): 277-286.
    [39]
    LAING D, RINKLEBE G, VANDECASTEELE J, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review [J]. Science of the Total Environment, 2009, 407(13): 3972-3985.
    [40]
    陈松, 廖文卓, 许爱玉, 等. 长江口沉积物-铅的吸附动力学及环境影响 [J]. 台湾海峡, 1999(2): 125-130.
    [41]
    李国平, 朱建荣. 2015—2017年枯季长江河口青草沙水库盐水入侵分析 [J]. 华东师范大学学报 (自然科学版), 2018(2): 160-169.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article views (83) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return