中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 4
Turn off MathJax
Article Contents
YIN Xueyan, YAN Guanghan, WANG Xing. Research on the integration and application of aquatic vegetation restoration technology in the lakeshore zone of Taihu Lake[J]. Journal of East China Normal University (Natural Sciences), 2021, (4): 26-38. doi: 10.3969/j.issn.1000-5641.2021.04.004
Citation: YIN Xueyan, YAN Guanghan, WANG Xing. Research on the integration and application of aquatic vegetation restoration technology in the lakeshore zone of Taihu Lake[J]. Journal of East China Normal University (Natural Sciences), 2021, (4): 26-38. doi: 10.3969/j.issn.1000-5641.2021.04.004

Research on the integration and application of aquatic vegetation restoration technology in the lakeshore zone of Taihu Lake

doi: 10.3969/j.issn.1000-5641.2021.04.004
  • Received Date: 2020-12-04
  • Publish Date: 2021-07-25
  • Since the eleventh five-year plan, the National Major Science and Technology Program for Water Pollution Control and Treatment (referred to as the “Water Program”) has developed more than 20 key technologies to assist in restoring the lakeshore zone of Taihu Lake Basin. These solutions overcome the application limitations of a single technology in ecological restoration of the lakeshore zone. This includes technologies for: rebuilding the upwind bank slope to eliminate wave and algae in the ecological restoration area; rapid settlement of sediment for lasting improvements in water quality; multi-level reconstruction technology for aquatic vegetation in an open water area; large-scale cultivation and community construction for optimal allocation and stabilization of aquatic plants; and utilization of aquatic vegetation resources for long-term operation and management, based on the technical requirements for improving soil stability, improving the wetland habitat, and restoring the aquatic vegetation in the restoration area. Hence, a comprehensive technology solution for ecological restoration of different lakeshore zones in Taihu Lake Basin (titled “investigation and assessment of lakeshore zone status, wetland habitat improvement, wetland aquatic vegetation restoration, and long term management”) was formed. The complete technology solution for vegetation restoration in the dike-type lakeshore zone has been successfully applied in Zhushan Bay of Taihu Lake, with the wind wave reduced by 64% and the vegetation coverage rate exceeding 30%. The complete technology solution for vegetation restoration in a gentle slope lakeshore zone was also successfully applied in Gonghu Bay of Taihu Lake; the implementation resulted in coverage of aquatic plants reaching 57%, water depth transparency of more than 110 cm, and a greatly improved biodiversity index. In summary, the research results provide a practical basis for aquatic vegetation restoration and water quality improvement.
  • loading
  • [1]
    OSTENDORP W. New approaches to integrated quality assessment of lakeshores [J]. Limnologica, 2004, 34: 160-166.
    [2]
    OSTENDORP W, SCHMIEDER K, JOHNK K. Assessment of human pressures and hydromophological impactson lakeshores in Europe [J]. Ecohydrology and Hydrobiology, 2004, 4(4): 229-245.
    [3]
    叶春. 退化湖滨带水生植物恢复技术及工程示范研究 [D]. 上海: 上海交通大学, 2007.
    [4]
    RISSER P G. Spatial and Temporal Variability of Biospheric and Geospheric Process: Research Needed to Determine Interactions with Global Environmental Change [M]. Paris: The International Council of Scientific Unions Press, 1985.
    [5]
    GELWICK FP, MATTHEWS W J. Temporal and spatial patterns in littoral-zone fish assemblages of a reservoir (Lake Texoma, Oklahoma-Texas, USA) [J]. Environmental Biology of Fishes, 1990, 27(2): 107-120.
    [6]
    LEMLY A, DIMMICK J. Structure and dynamics of zooplankton communities in the littoral zone of some North Carolina Lakes [J]. Hydrobiologia, 1982, 88(3): 299-307.
    [7]
    SCHMIEDER K. European lake shores in danger-concepts for a sustainable development [J]. Limnologica, 2004, 34: 3-4.
    [8]
    金相灿. 湖泊富营养化控制和管理技术 [M]. 北京: 化学工业出版社, 2001.
    [9]
    叶春, 金相灿, 王临清, 等. 洱海湖滨带生态修复设计原则与工程模式 [J]. 中国环境科学, 2004, 24(6): 717-721.
    [10]
    颜昌宙, 叶春, 刘文祥. 云南洱海湖滨带生态重建方案研究 [J]. 上海环境科学, 2003, 22(7): 459-464.
    [11]
    李春华, 叶春, 陈小刚, 等. 太湖湖滨带植物恢复方案研究 [J]. 中国水土保持, 2012(7): 35-37.
    [12]
    田昆, 陆梅, 常凤来, 等. 农业利用和人为干扰对剑湖湿地土壤特性的影响 [J]. 农业环境科学学报, 2004, 23(2): 267-271.
    [13]
    许秋瑾, 金相灿, 颜昌宙. 中国湖泊水生植被退化现状与对策 [J]. 生态环境, 2006, 15(5): 1126-1130.
    [14]
    赵其国, 高俊峰. 中国湿地资源的生态功能及其分区 [J]. 中国生态农业学报, 2007, 15(1): 1-4.
    [15]
    杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略 [J]. 湖泊科学, 2010, 22(6): 799-810.
    [16]
    蒋丽佳, 胡小贞, 许秋瑾, 等. 湖滨带生态退化现状, 原因分析及对策 [J]. 生物学杂志, 2011, 28(5): 65-69.
    [17]
    叶春, 李春华, 吴蕾, 等. 湖滨带生态退化及其与人类活动的相互作用 [J]. 环境科学研究, 2015, 28(3): 401-407.
    [18]
    余辉, 逄勇, 徐军, 等. 太湖流域水污染及富营养化综合控制研究 [M]. 北京: 科学出版社, 2014.
    [19]
    孔繁翔, 胡维平, 范成新, 等. 太湖流域水污染控制与生态修复的研究与战略思考 [J]. 湖泊科学, 2006, 18(3): 193-198.
    [20]
    叶春, 李春华, 陈小刚, 等. 太湖湖滨带类型划分及生态修复模式研究 [J]. 湖泊科学, 2012, 24(6): 822-828.
    [21]
    崔保山, 杨志峰. 湿地生态系统健康研究进展 [J]. 生态学杂志, 2001, 20(3): 31-36.
    [22]
    ERWIN K L. Wetlands and global climate change: The role of wetland restoration in a changing world [J]. Wetlands Ecology and Management, 2009, 17(1): 71-84.
    [23]
    JORGENSEN S E. Energy and ecological buffer capacities as measures of ecosystem health [J]. Ecosystem Health, 1995, 1(3): 150-160.
    [24]
    KARR J R. Assessing biological integrity in running waters: A method and its rationale [J]. Illinois Natural History Survey Special Publication, 1986(5): 1-28.
    [25]
    MAGEAU M T, COSTANZA R, ULANOWICZ R E. The development and initial testing a quantitative assessment of ecosystem health [J]. Acta Psychiatrica Scandinavica, 1995, 1(2): 201-213.
    [26]
    徐红玲, 潘继征, 徐力刚, 等. 太湖流域湖荡湿地生态系统健康评价 [J]. 湖泊科学, 2019, 31(5): 1279-1288.
    [27]
    颜昌宙, 金相灿, 赵景柱, 等. 湖滨带的功能及其管理 [J]. 生态环境, 2005, 14(2): 294-298.
    [28]
    柴培宏, 代嫣然, 梁威, 等. 湖滨带生态修复研究进展 [J]. 中国工程科学, 2010, 12(6): 32-35.
    [29]
    闫诚, 杨柳燕, 魏儒平, 等. 太湖湖滨带湿地恢复策略分析 [J]. 污染防治技术, 2020, 33(2): 18-22.
    [30]
    FISHER S G. Recovery processes in lotic ecosystems - limits of successional theory [J]. Environmental Management, 1990, 14: 725-736.
    [31]
    SARR D A. Riparian livestock exclosure research in the western United States: A critique and some recommendations [J]. Environmental Management, 2002, 30: 516-526.
    [32]
    LAKE P S, BOND N, REICH P. Linking ecological theory with stream restoration [J]. Freshwater biology, 2007, 52(4): 597-615.
    [33]
    HOBBS R J, NORTON D A. Towards a conceptual framework for restoration ecology [J]. Restoration ecology, 1996, 4(2): 93-110.
    [34]
    LOCKWOOD J L, PIMM S L. Ecological assembly rules: Perspectives, advances, retreats [M]// WIEHER E, KEDDY P A. When Does Restoration Succeed. Cambridge: Cambridge University Press, 1999: 363-392.
    [35]
    HILDREW A G, GILLER P S. Patchiness, species interactions and disturbance in the stream benthos [M]// GILLER P S, HILDREW A G, RAFFAELLI D G. Aquatic Ecology. Scale, Pattern and Process. Oxford UK: Blackwell, 1994: 21-62.
    [36]
    BOULTON A J, LAKE P S. The ecology of two intermittent streams in Victoria, Australia [J]. Freshwater Biology, 1992, 27(1): 99-121.
    [37]
    叶春. 国家水体污染控制与治理重大专项“十一五”课题“湖滨带生态修复与缓冲带建设技术及工程示范”(2009ZX07101009)研究报告 [R]. 北京: 中国环境科学研究院, 2012.
    [38]
    钱新. 国家水体污染控制与治理重大专项“十二五”课题“太湖贡湖生态修复模式工程技术研究与综合示范”(2012ZX07101007)研究报告 [R]. 南京: 南京大学, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (75) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return