中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 4
Nov.  2011
Turn off MathJax
Article Contents
LIU Ru-qing, DUAN Yan-hong, CAO Xiao-hua. αCaMKII overexpressions enhance excitatory synaptic transmission in insular cortex of mice[J]. Journal of East China Normal University (Natural Sciences), 2011, (4): 94-103,123.
Citation: LIU Ru-qing, DUAN Yan-hong, CAO Xiao-hua. αCaMKII overexpressions enhance excitatory synaptic transmission in insular cortex of mice[J]. Journal of East China Normal University (Natural Sciences), 2011, (4): 94-103,123.

αCaMKII overexpressions enhance excitatory synaptic transmission in insular cortex of mice

  • Received Date: 2010-04-01
  • Rev Recd Date: 2010-07-01
  • Publish Date: 2011-07-05
  • The experiment was designed to study basic electrophysiological characteristics and basal synaptic transmission of insular pyramidal cells in CaMKII forebrain overexpression mice by patch clamping. The basic electrophysiological results showed that there were no significant differences in the resting membrane potential, action potential and I-V curve of pyramidal cells in insular cortex between wild type and transgenic mice. No significant difference was measured in the frequency of sEPSCs and mEPSCs. However, compared to the wild type mice, transgenic mice exhibited augmented amplitude of sEPSCs and mEPSCs. There was also no significant difference in PPF curve. The results suggested that forebrain specific overexpression of CaMKII did not change the basic electrophysiological characteristics and presynaptic transmitter release in insular cortex. The influence of CaMKII overexpression on the amplitude of EPSCs may be mediated by postsynaptic receptors.
  • loading
  • [1]
    [1] WANG H, SHIMIZU E, TANG Y P. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain [J]. PNAS, 2003, 100(7): 4287-4292.

    [2] AUGUSTINE J R. Circuitry and functional aspects of the insular lobe in primates including humans [J]. Brain Research Reviews, 1996, 22: 229-244.

    [3] SHELLEY B P, TRIMBLE M R. The insular lobe of Reil-its anatamico-functional, behavioural and neuropsychiatric attributes in humans-a review [J]. World J Biol Psychiatry, 2004, 5(4): 176-200.

    [4] DUFFAU H, TAILLANDIER L, GATIGNOL P. The insular lobe and brain plasticity: Lessons from tumor surgery [J]. Clinical Neurology and Neurosurgery, 2006, 108: 543-548.

    [5] BURES J,FEDERICO B R, YAMAMOTO T. Conditioned Taste Aversion: Memory of a Special Kind [M]. Oxford: Oxford University Press, 1998: 1-13.

    [6] FEDERICO B R, LETICIA R L, RANIER G. Molecular signals into the insular cortex and amygdala during aversive gustatory memory formation [J]. Cell Mol Neurobiol, 2004, 24(1): 25-36.

    [7] BRAUN J J, SLICK T B, LORDEN J F. Involvement of gustatory neocortex in the learning of taste aversions [J]. Physiol Behav, 1972, 9(4): 637-641.

    [8] ROMAN C, REILLY S. Effects of insular cortex lesions on conditioned taste aversion and latent inhibition in the rat [J]. European Journal of Neuroscience, 2007, 26: 2627-2632.

    [9] ESCOBAR M L,BERMUDEZ-RATTONI F. Long-term potentiation in the insular cortex enhances conditioned taste aversion retention [J]. Brain Res, 2000, 852(1): 208-212.

    [10] ESCOBAR M L,CHAO V, BERMUDEZ-RATTONI F. In vivo long-term potentiation in the insular cortex: NMDA receptor dependence [J]. Brain Research, 1998, 779: 314-319.

    [11] RODRIGUES S M, FARB C R, BAUER E P, et al. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase Ⅱ at lateral amygdala synapses [J]. J Neurosci, 2004, 24(13): 3281-3288.

    [12] BENNETT M K, ERONDU N E, KENNEDY M B. Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain [J]. Biol Chem, 1983, 258: 12735-12744.

    [13] MALINOW R, SCHULMAN H, TSIEN R W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP [J]. Science, 1989, 245: 862-866.

    [14] SILVA A J, STEVENS C F, TONEGAWA S, et al. Deficient hippocampal long-term potentiation in a-calcium-calmodulin kinase Ⅱ mutant mice [J]. Science, 1992, 257: 201-206.

    [15] SILVA A J, PAYLOR R, WEHNER J M, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase Ⅱ mutant mice [J]. Science, 1992: 257, 206-211.

    [16] HANSON P I, SCHULMAN H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis [J]. Annu Rev Biochem, 1992, 61: 559-601.

    [17] BACH M E, HAWKINS R D, OSMAN M, et al. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency [J]. Cell, 1995, 81: 905-915.

    [18] MAYFORD M, BACH M E, HUANG Y Y, et al. Control of memory formation through regulated expression of a CaMKII transgene [J]. Science, 1996, 274: 1678-1683.

    [19] MALENKA R C, NICOLL R A. Long-term potentiation-a decade of progress [J] . Science, 1999, 285: 1870-1874.

    [20] FRANKLAND P W, O’BRIEN C, OHNO M, et al. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory [J]. Nature, 2001, 411: 309-313.

    [21] LISMAN J, SCHULMAN H, CLINE H. The molecular basis of CaMKII function in synaptic and behavioural memory [J]. Nat Rev Neurosci, 2002, 3(3): 175-190.

    [22] IRVINE E E, VON HERTZEN L S, PLATTNER F, et al. Alpha-CaMKII autophosphorylation: a fast track to memory [J]. Trends Neurosci, 2006, 29(8): 459-465.

    [23] IRVINE E E, VERNON J, GIESE K P. Alpha-CaMKII autophosphorylation contributes to rapid learning but is not necessary for memory [J]. Nat Neurosci, 2005(8): 411-412.

    [24] CAO X, WANG H, MEI B. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation [J]. Neuron, 2008, 60(2): 353-366.

    [25] BELELOVSKY K, ELKOBI A, KAPHZAN H, et al. A molecular switch for translational control in taste memory consolidation [J]. European Journal of Neuroscience, 2005, 22: 2560-2568

    [26] LI Y X, ZHANG Y, LESTER H A, et al. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons [J]. J Neuroscience, 1998, 18: 10231-10240.

    [27] LIU Z W, YANG S, ZHANG Y X, et al. Presynaptic alpha-7 nicotinic acetylcholine receptors modulate excitatory synaptic transmission in hippocampal neurous [J]. Acta Physiol Sin, 2003, 55: 731-735.

    [28] DEBANNE D, GUERINEAU N C, GAHWILER B H, et al. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release [J]. J Physiol, 1996, 491: 163-176.

    [29] MERRILL M A, CHEN Y, STRACK S, et al. Activity-driven postsynaptic translocation of CaMKII [J]. Trends Pharmacol Sci, 2005, 26(12): 645-653.

    [30] TAN S E, WENTHOLD R J, SODERLING T R. Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase Ⅱ and protein kinase C in cultured hippocampal neurons [J]. J Neurosci, 1994, 14(3 Pt 1): 1123-1129.                                                                                      [31] BARRIA A, DERKACH V, SODERLING T. Identification of the Ca2+/calmodulin-dependent protein kinase Ⅱ regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl4- isoxazole-propionate-type glutamate receptor [J]. J Biol Chem, 1997, 272: 32727-32730.

    [32] THIAGARAJAN T C, PIEDRAS-RENTERIA E S, TSIEN R W. α- and βCaMKII: inverse regulation by neuronal activity and opposing effects on synaptic strength [J]. Neuron, 2002, 36: 1103-1114.

    [33] SONG I, HUGANIR R L. Regulation of AMPA receptors during synaptic plasticity [J]. Trends Neurosci, 2002, 25: 578-588.

    [34] LOWETH J A, SINGER B F, BAKER L K, et al. Transient Overexpression of α-Ca2+/Calmodulin-Dependent Protein Kinase Ⅱ in the Nucleus Accumbens Shell Enhances Behavioral Responding to Amphetamine [J]. J Neurosci, 2010, 30(3): 939-949.

    [35] COLONNESE M T, SHI J, CONSTANTINE-PATON M. Chronic NMDA receptor blockade from birth delays the maturation of NMDA currents, but does not affect AMPA/kainate currents [J]. J Neurophysiol, 2003, 89(1): 57-68.

    [36] COLBRAN R J, BROWN A M. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity [J]. Neurobiology, 2004, 14: 318-327.

    [37] OMKUMAR R V,KIELY M J, ROSENSTEIN A J, et al. Identification of a phosphorylation site for calcium/calmodulin-dependent protein kinase Ⅱ in the NR2B subunit of the N-methyl-D-aspartate receptor [J]. J Biol Chem, 1996, 271: 31670-31678.

    [38] LISMAN J, SCHULMAN H, CLINE H. The molecular basis of CaMKII function in synaptic and behavioural memory [J]. Nat Rev Neurosci, 2002, 3(3): 175-190.

    [39] BARRIA A, MALINOW R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J]. Neuron, 2005, 48: 289-301.

    [40] PARK C S, ELGERSMA Y, GRANT S G, et al. αCaMKII and PSD-95 differentially regulate synaptic expression of NR2A and NR2B-containing NMDA receptors in hippocampus [J]. Neuroscience, 2008, 151(1): 43-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2453) PDF downloads(2216) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return