中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 6
Jan.  2013
Turn off MathJax
Article Contents
QI Qiu-yan, YANG Shu-hui, ZHONG Qi-cheng, ZHANG Chao, WANG Kai-yun. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China[J]. Journal of East China Normal University (Natural Sciences), 2012, (6): 29-38.
Citation: QI Qiu-yan, YANG Shu-hui, ZHONG Qi-cheng, ZHANG Chao, WANG Kai-yun. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China[J]. Journal of East China Normal University (Natural Sciences), 2012, (6): 29-38.

Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China

  • Received Date: 2011-09-01
  • Rev Recd Date: 2011-12-01
  • Publish Date: 2012-11-25
  • Using the method of Open-top chambers (OTC) to simulate climate warming in the future, The study was carried out in reclaimed marsh in Eastern Chongming Island in rapid growth season. The results showed that the net photosynthetic rate(〖WTBX〗Pn〖WTBZ〗), transpiration rate(〖WTBX〗Tr〖WTBZ〗) and stomatal conductance(〖WTBX〗Gs〖WTBZ〗) of 〖WTBX〗P. australis 〖WTBZ〗in OTC were significantly reduced by 11.9%, 22.5% and 21.7%, respectively, while the intercellular CO2 concentration(〖WTBX〗Ci〖WTBZ〗) and water use efficiency (〖WTBX〗WUE)〖WTBZ〗 were lower, but the changes were not significant. The net photosynthetic rate-light intensity (〖WTBX〗Pn-PAR〖WTBZ〗) curves which were nonlinear fitted in OTC and CK showed the same trend that Pn increased quickly and then hasten gentle by 〖WTBX〗PAR〖WTBZ〗. In OTC, photosynthetic response curve of the 〖WTBX〗P. australis〖WTBZ〗 was lower than the control plots; at the same time, the temperature enhancement made the light saturation point (〖WTBX〗LSP〖WTBZ〗) and apparent quantum efficiency (〖WTBX〗AQY〖WTBZ〗) dramatically reduced by 22.0% and 12.1%, respectively, but the dark respiration rate (〖WTBX〗Rd〖WTBZ〗) and light compensation point (〖WTBX〗LCP〖WTBZ〗) respectively increased by 16.5% and 14.9%. The maximum net photosynthetic rate(〖WTBX〗P〖WTBZ〗max) of 〖WTBX〗P. australis〖WTBZ〗 in OTC was not evidently effected. Meanwhile, the leaf nitrogen content(〖WTBX〗N〖WTBZ〗mass) of 〖WTBX〗P. australis 〖WTBZ〗in OTC were significantly reduced, while the leaf mass per area (〖WTBX〗LMA 〖WTBZ〗) was higher, but the changes of photosynthetic nitrogen use efficiency (〖WTBX〗PNUE〖WTBZ〗) was not significant. To 〖WTBX〗P. australis〖WTBZ〗 in Eastern Chongming Island, the 〖WTBX〗LMA 〖WTBZ〗was significantly negatively correlated with the 〖WTBX〗PNUE〖WTBZ〗 ,〖WTBX〗P〖WTBZ〗mass (〖WTBX〗p〖WTBZ〗 0.05) and 〖WTBX〗N〖WTBZ〗mass(〖WTBX〗p〖WTBZ〗 0.01), while the 〖WTBX〗Nmass〖WTBZ〗 was positively correlated with the 〖WTBX〗PNUE〖WTBZ〗(〖WTBX〗p 〖WTBZ〗0.01) . The correlation analysis showed that the 〖WTBX〗P〖WTBZ〗max was significantly positively correlated with 〖WTBX〗N〖WTBZ〗mass(〖WTBX〗p 〖WTBZ〗0.01) and 〖WTBX〗PNUE(p〖WTBZ〗0.05〖WTBX〗).〖WTBZ〗In summary, the simulated warming significantly affected the photosynthetic characteristics of 〖WTBX〗P. australis.
  • loading
  • [1]
    [1] WANG K Y, KELLOMKI S, LAITINEN K. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2[J]. Agricultural and Forest Meteorology, 1996, 82(1-4): 195-217.

    [2] IPCC Fourth Assessment Report of Working Group. Climate Change 2007: The Physical Science Basis[R]. Cambridge: Cambridge University Press, 2007.

    [3] REFAIE G E. Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt[J]. Ain Shams Eengineering Journal, 2010, 1(1): 1-9.

    [4] 孟宪民.湿地与全球环境变化[J].地理科学, 1999, 19(5): 385-391. 

    [5] MORISON J L, LAWLOR D W. Interactions between increasing CO2 concentration and temperature on plant growth[J]. Plant Cell Environment, 1999, 22(6): 659-682.

    [6] 曾小平, 赵平, 孙谷畴.气候变暖对陆生植物的影响[J].应用生态学报, 2006, 17(12): 2445-2450.

    [7] SHAH N H, PAULSEN G M. Interaction of drought and high temperature on photosynthesis and grain-filling wheat[J]. Plant Soil, 2003, 257(1): 219-226.

    [8] HARTE J, SHAW R. Shifting dominance within a montane vegetation community: Results of a climate-warmin experiment[J]. Science, 1995, 267(5199): 876-880.

    [9] 石福孙,吴宁,吴彦,等.模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响[J].应用与环境生物学报, 2009, 15(6): 750-755.

    [10] RUSTAD L, CAMPBELL J, MARION G, et al. A meta analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562.

    [11] KOU T J, ZHU J G, XIE Z B, et al. Effect of elevated atmospheric pCO2 on soil respiration during wheat bloom-growth period[J]. Journal of Agro-Environment Science, 2007, 26(3): 1111-1116.

    [12] TISSUE D T, THOMAS R B, STRAIN B R. Atmospheric CO2 enrichment increases growth and photosynthesis of〖WTBX〗 Pinus taeda〖WTBZ〗: a 4-year experiment in the field[J]. Plant, Cell and Environment, 1997, 20(9): 1123-1134.

    [13] ERICE G, IRIGOYEN J J, PEREZ P, et al. Effect of elevated CO2, temperature and drought on photosynthesis of 〖WTBX〗nodulated alfalfa〖WTBZ〗 during a cutting regrowth cycle[J]. Physioligia Plantarum, 2006, 126(3): 458-468.

    [14] BUNCE J A. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings growth outdoors at an elevated concentration of carbon dioxide[J]. Plant Cell and Environment, 1992, 15(5): 541-549.

    [15] LOIK M E, REDAR S P, HARTE J. Photosynthetic responses to a climate-warming manipulation for contrasting meadowspecies in the Rocky Mountains, Colorado, USA[J]. Functional Ecology, 2000, 14(2): 166-175.

    [16] 郑淑霞, 上官周平.不同功能型植物光合特征及其与叶氮含量、比叶重的关系[J].生态学报,2007, 27(1): 171-181.

    [17] EVANS J R. Photosynthesis and nitrogen relationship s in leaves of C3 plants[J]. Oecologia, 1989, 78: 9-19.

    [18] TAKASHIMA T, HIKOSAKE K, HIROSE T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species[J]. Plant Cell and Environment, 2004, 27: 1047-1054.

    [19] 赵平,KRIEBITZSCH W,张志权.欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量[J].热带亚热带植物学报,1999, 7(2): 133-139.

    [20] WARREN C R, ADAMS M A. Evergreen trees do notmaximize instantaneous photosynthesis[J]. Trends in Plant Science, 2004(9): 270-274.

    [21] HENRY G H R, MOLAU U T. Undra plants and climate change:the International Tundra Experiment(ITEX)[J]. Global Change Biology, 1997, 3(s1): 1-9.

    [22] WOOKEY P A, PARSONS A N, WELKER J M, et al. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants[J]. Oikos, 1993, 67(3): 490-502.

    [23] 石冰,马金妍,王开运, 等.崇明东滩围垦芦苇生长、繁殖和生物量分配对大气温度升高的响应[J].长江流域资源与环境,2010, 19(4): 383-388.

    [24] 董艳,姜彬慧,于梅,等.五十年辽河三角洲湿地气候变化对植物种群的影响[J].沈阳化工学学学报, 2008, 22(1): 29-34.

    [25] 李荣平,刘晓梅,周广胜.盘锦湿地芦苇物候特征及其对气候变化的响应[J ].气象环境学报, 2006, 22(4): 30-34.

    [26] BASSMAN J B, ZWIER J C.Gas exchange characteristics of 〖WTBX〗Popldua trichocarpa,Populua dehoides 〖WTBZ〗and 〖WTBX〗Populua trichocarpa × P.dehoides〖WTBZ〗 clone[J].Tree Physiology, 1991, 8(2): 145-149.

    [27] POORTER H, EVANS J R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area[J]. Oecologia, 1998, 116: 26-37.

    [28] ZHAO C Z, LIU Q. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization[J]. Canadian Journal of Forest Research, 2008, 38: 1-12.

    [29] DE VALPINE P, HARTE J. Plant response to experimental warming in a montane meadow[J]. Ecology, 2001, 82(3): 637-648.

    [30] 于强,王天铎.光合作用—蒸腾作用—气孔导度的耦合模型及C3植物叶片对环境因子的生理响应[J].植物学报, 1998, 40(8): 740-754.

    [31] 张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报, 2004, 30(3):269-276.

    [32] LONG S P, AINSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide:plant FACE the future[J]. Annual Review of Plant Biology, 2000,14: 166-175.

    [33] ZHANG Y B, DUAN B L, QIAO Y Z, et al. Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density[J]. Forest Ecology and Management, 2008, 255(5-6): 1937-1944.

    [34] 许大全.气孔的不均匀关闭与光合作用的非气孔限制[J]. 植物生理学通讯,1995, 31(4): 246-252.

    [35] 焦娟玉,尹春英,陈珂.土壤水、氮供应对麻疯树幼苗光合特性的影响[J].2011, 35(1): 91-99.

    [36] 冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重、光合特性和暗呼吸对生长光环境的适应[J]. 生态学报, 2002, 22(6): 901-909.

    [37] 李春燕.常绿阔叶林树种栲树幼苗对不同光环境的光合生理响应[J].生态学杂志,2009, 28(9): 1801-1807.

    [38] WARREN C R, ADAMS M A. Evergreen trees do notmaximize instantaneous photosynthesis[J]. Trends in Plant Science, 2004(9): 270-274.

    [39] 徐振锋,胡庭兴,张力,等.青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应[J].植物生态学报,2010, 34(3): 263-270.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2230) PDF downloads(2075) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return