中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 4
Jul.  2014
Turn off MathJax
Article Contents
ZHU Jing-jing, LI Wan-shun, GAO Hong, XU Tong, BAO Qiu-ying, ZHENG Yong-xiang, ZHOU De-min, XIA Gang. De novo transcriptome analysis and the phylogenetic position of glass lizards[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 102-112.
Citation: ZHU Jing-jing, LI Wan-shun, GAO Hong, XU Tong, BAO Qiu-ying, ZHENG Yong-xiang, ZHOU De-min, XIA Gang. De novo transcriptome analysis and the phylogenetic position of glass lizards[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 102-112.

De novo transcriptome analysis and the phylogenetic position of glass lizards

  • Received Date: 2013-10-01
  • Rev Recd Date: 2014-01-01
  • Publish Date: 2014-07-25
  • Glass lizards are a group of reptiles that resemble snake and possess many lizard's characteristics that contributed to its ambiguous taxonomy. Meanwhile, glass lizards were recorded to have many therapeutic applications in TCM. Hence, we present the sequencing, de novo assembly and annotation of transcriptome from \textit{Ophisaurus}\textit{ harti}'s gastrointestinal tract. A total 4.6~Gbp of high quality data was generated, 58~959 unigenes were assembled and 35~708 (60.56{\%}) unigenes were annotated to the public databases. To understand the evolutionary relationship among glass lizard, snake and lizard, ortholog gene families and phylogenic tree were performed, and the results all showed that \textit{Ophisaurus}\textit{harti} is more closely related to the snakes than to the lizard. A total of 10~613 cSSR markers from the \textit{Ophisaurus}\textit{harti} transcriptome were identified and 1~644 markers were obtained using at least one primer with a strict criterion. This is the first time to give insight into the transcriptome and phylogenetic evolution in \textit{Ophisaurus harti}. These sequences and markers will provide valuable sources for \textit{Ophisaurus harti} studies.
  • loading
  • [1]
    {1} SECOR S M. Digestive physiology of the Burmese python: broad regulation of integrated performance [J]. J Exp Biol, 2008, 211(24): 3767-3774.
    {2} WIENS J J, SLINGLUFF J L. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards [J]. Evolution, 2001, 55(11): 2303-2318.
    {3} BRANDLEY M C, HUELSENBECK J P, WIENS J J. Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms [J]. Evolution, 2008, 62(8): 2042-2064.
    {4} CASTOE T A, de KONING J A, HALL K T, et al. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes [J]. Genome Biol, 2011, 12(7): 406.
    {5} VIDAL N, HEDGES S B. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes [J]. C R Biol, 2005, 328(10-11): 1000-1008.
    {6} LI S Z. Compendium of Materia Medica (Bencao Gangmu) [M]. LUO X W translator. Beijing: Foreign Languages Press, 2004.
    {7} NENE V, WORTMAN J R, LAWSON D, et al. Genome sequence of Aedes aegypti, a major arbovirus vector [J]. Science, 2007, 316(5832): 1718-1723.
    {8} FARKAS S L, BENKO M, ELO P, et al. Genomic and phylogenetic analyses of an adenovirus isolated from a corn snake (Elaphe guttata) imply a common origin with members of the proposed new genus Atadenovirus [J]. J Gen Virol, 2002, 83(Pt 10): 2403-2410.
    {9} ALFOLDI J, DI PALMA F, Grabherr M, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals [J]. Nature, 2011, 477(7366): 587-591.
    {10} MARDIS E R. Next-generation DNA sequencing methods [J]. Annu Rev Genomics Hum Genet, 2008(9): 387-402.
    {11} GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nat Biotechnol, 2011, 29(7): 644-652.
    {12} PERTEA G, HUANG X, LIANG F, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets [J]. Bioinformatics, 2003, 19(5): 651-652.
    {13} KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome [J]. Nucleic Acids Res, 2004, 32(Database issue): D277-280.
    {14} ISELI C, JONGENEEL C V, BUCHER P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences [J]. Proc Int Conf Intell Syst Mol Biol, 1999, : 138-148.
    {15} CONESA A, GOTZ S, GARCIA-GOMEZ J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics, 2005, 21(18): 3674-3676.
    {16} MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 2008, 5(7): 621-628.
    {17} YU X J, ZHENG H K, WANG J, et al. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup [J]. Genomics, 2006, 88(6): 745-751.
    {18} HUELSENBECK J P, RONQUIST F. MRBAYES: Bayesian inference of phylogenetic trees [J]. Bioinformatics, 2001, 17(8): 754-755.
    {19} POSADA D, CRANDALL K A. MODELTEST: testing the model of DNA substitution [J]. Bioinformatics, 1998, 14(9): 817-818.
    {20} UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, et al. FAIRCLOTH B C, REMM M, ROZEN S G. Primer3--new capabilities and interfaces [J]. Nucleic Acids Res, 2012, 40(15): e115.
    {21} CASTOE T A, FOX S E, JASON de KONING A, et al. A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus) [J]. BMC Res Notes, 2011(4): 310.
    {22} SCHWARTZ T S, TAE H, YANG Y, et al. A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences [J]. BMC Genomics, 2010(11): 694.
    {23} Consortium ICGS. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution [J]. Nature, 2004, 432(7018): 695-716.
    {24} HELLSTEN U, HARLAND R M, GILCHRIST M J, et al. The genome of the Western clawed frog Xenopus tropicalis [J]. Science, 2010, 328(5978): 633-636.
    {25} DU H, BAO Z, HOU R, et al. Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867) [J]. PLoS One, 2012, 7(3): e33311.
    {26} GARG R, PATEL R K, TYAGI A K, et al. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification [J]. DNA Res, 2011, 18(1): 53-63.
    {27} CASTOE T A, GU W, de KONING A P, et al. Dynamic nucleotide mutation gradients and control region usage in squamate reptile mitochondrial genomes [J]. Cytogenet Genome Res, 2009, 127(2-4): 112-127.
    {28} DUBEY S, SHINE R. Evolutionary diversification of the lizard genus Bassiana (Scincidae) across Southern Australia [J]. PLoS One, 2010, 5(9): e12982.
    {29} KOCOT K M, CANNON J T, TODT C, et al. Phylogenomics reveals deep molluscan relationships [J]. Nature, 2011, 477(7365): 452-456.
    {30} LI H, COGHLAN A, RUAN J, et al. TreeFam: a curated database of phylogenetic trees of animal gene families [J]. Nucleic Acids Res, 2006, 34(Database issue): D572-580.
    {31} Carroll R L. Patterns and processes of vertebrate evolution. Cambridge Univ. New York1997.
    {32} NISHYAMA T, FUJITA T, SHIN T, et al. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution [J]. Proc Natl Acad Sci U S A, 2003, 100, 13: 8007-8012.
    {33} BOURDON V, NAEF F, RAO P H, et al. Genomic and expression analysis of the 12p11-p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes [J]. Cancer Res, 2002, 62(21): 6218-6223.
    {34} PARCHMAN T L, GEIST K S, GRAHNEN J A, et al. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery [J]. BMC Genomics, 2010(11): 180.
    {35} TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Res, 2001, 11(8): 1441-1452.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2198) PDF downloads(2791) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return