[1] 连展, 魏泽勋, 王永刚, 等. 中国近海环流数值模拟研究综述 [J]. 海洋科学进展, 2009(2): 250-265. DOI:  10.3969/j.issn.1671-6647.2009.02.016.
[2] MOLL A, RADACH G. Review of three-dimensional ecological modelling related to the North Sea shelf system [J]. Progress in Oceanography, 2003, 57(2): 175-217. DOI:  10.1016/S0079-6611(03)00067-3.
[3] 曲大鹏. POM海洋数值模式及对渤、黄、东海潮汐潮流模拟试验的初步分析 [D]. 山东 青岛: 国家海洋局第一海洋研究所, 2008.
[4] 王彪, 朱建荣. 基于FVCOM模型的珠江河口及其邻近海域的潮汐模拟 [J]. 热带海洋学报, 2012(4): 17-27.
[5] LIM H, KIM C S, PARK K, et al. Down-scaled regional ocean modeling system (ROMS) for high-resolution coastal hydrodynamics in Korea [J]. Acta Oceanologica Sinica, 2013, 32(9): 50-61. DOI:  10.1007/s13131-013-0352-y.
[6] 储鏖. Delft3D在天文潮与风暴潮耦合数值模拟中的应用 [J]. 海洋预报, 2004(3): 29-36. DOI:  10.3969/j.issn.1003-0239.2004.03.005.
[7] PEÑA M A, MASSON D, CALLENDAR W. Annual plankton dynamics in a coupled physical-biological model of the Strait of Georgia, British Columbia [J]. Progress in Oceanography, 2016, 146: 58-74. DOI:  10.1016/j.pocean.2016.06.002.
[8] 杨金湘, 王佳. 台湾海峡冬、夏季氮通量的数值模拟研究 [J]. 海洋学报, 2018(4): 30-40.
[9] LIU G, CHAI F. Seasonal and interannual variability of primary and export production in the South China Sea: A three-dimensional physical - biogeochemical model study [J]. Ices Journal of Marineence, 2009, 2(66): 420-431.
[10] 郭琳. 加利福尼亚流系物理-生态过程的时空演变特征及其动力学机制研究 [D]. 山东 青岛: 中国海洋大学, 2015.
[11] 张璇, 江毓武. 珠江口夏季底层缺氧现象的数值模拟 [J]. 厦门大学学报(自然科学版), 2011(6): 1042-1046.
[12] 寿玮玮. 大气沉降对渤海营养盐的贡献及生态效应 [D]. 上海: 华东师范大学, 2018.
[13] FENG T, WANG C, HOU J, et al. Effect of inter-basin water transfer on water quality in an urban lake: A combined water quality index algorithm and biophysical modelling approach [J]. Ecological Indicators, 2018, 92: 61-71. DOI:  10.1016/j.ecolind.2017.06.044.
[14] CHEN C, BEARDSLRY R C, COWLES G. An unstructured grid, Finite-Volume Community Ocean Model: FVCOM user manual[R]. SMAST/UMASSD-13-0701, 2013.
[15] BUTENSCHÖN M, CLARK J. ERSEM 15.06: A generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels [J]. Geoscientific Model Development, 2015(8): 7063-7187.
[16] BRUGGEMAN J, BOLDING K. A general framework for aquatic biogeochemical models [J]. Environmental Modelling & Software, 2014, 61: 249-265. DOI:  10.1016/j.envsoft.2014.04.002.
[17] 郑沛楠, 宋军, 张芳苒, 等. 常用海洋数值模式简介 [J]. 海洋预报, 2008(4): 108-120. DOI:  10.3969/j.issn.1003-0239.2008.04.016.
[18] XIE Y, TILSTONE G H, WIDDICOMBE C, et al. Effect of increases in temperature and nutrients on phytoplankton community structure and photosynthesis in the western English Channel [J]. Marine Ecology Progress Series, 2015, 519: 61-73. DOI:  10.3354/meps11101.
[19] CHEN C, LIU H, BEARDSLEY R C. An unstructured grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to coastal ocean and estuaries [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159-186. DOI: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2.
[20] 宋洪军, 季如宝, 王宗灵. 近海浮游植物水华动力学和生物气候学研究综述 [J]. 地球科学进展, 2011(3): 257-265.
[21] CORNES R C, JONES P D. An examination of storm activity in the northeast Atlantic region over the 1851-2003 period using the EMULATE gridded MSLP data series [J]. Journal of Geophysical Research, 2011, 116(D16). DOI:  10.1029/2011JD016007.
[22] FINDLAY H S, YOOL A, NODALE M, et al. Modelling of autumn plankton bloom dynamics [J]. Journal of Plankton Research, 2006, 28(2): 209-220. DOI:  10.1093/plankt/fbi114.
[23] EDWARDS M, RICHARDSON A J. Impact of climate change on marine pelagic phenology and trophic mismatch [J]. Nature (London), 2004, 430(7002): 881-884. DOI:  10.1038/nature02808.
[24] 杜胜蓝, 黄岁樑, 臧常娟, 等. 浮游植物现存量表征指标间相关性研究Ⅰ: 叶绿素a与生物量 [J]. 水资源与水工程学报, 2011(1): 40-44.
[25] 杜胜蓝, 黄岁樑, 臧常娟, 等. 浮游植物现存量表征指标间相关性研究Ⅱ: 叶绿素a与藻密度 [J]. 水资源与水工程学报, 2011(2): 44-49.
[26] GE J, CHEN C, QI J, et al. A dike-groyne algorithm in a terrain-following coordinate ocean model (FVCOM): Development, validation and application [J]. Ocean Modelling, 2012, 47: 26-40. DOI:  10.1016/j.ocemod.2012.01.006.
[27] 陶英佳. 长江口盐水入侵自动化预报系统的设计与检验 [D]. 上海: 华东师范大学, 2015.
[28] LEE K, TONG L T, MILLERO F J, et al. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans [J]. Geophysical Research Letters, 2006, 33(19): L19605. DOI:  10.1029/2006GL027207.
[29] SOKOLETSKY L, YANG X, SHEN F. MODIS-based retrieval of suspended sediment concentration and diffuse attenuation coefficient in Chinese estuarine and coastal waters [C]// Ocean Remote Sensing & Monitoring from Space. International Society for Optics and Photonics, 2014.
[30] LAMQUIN N, MAZERAN C, DOXARAN D, et al. Assessment of GOCI radiometric products using MERIS, MODIS and field measurements [J]. Ocean Science Journal, 2012, 47(3): 287-311. DOI:  10.1007/s12601-012-0029-z.
[31] XING X, ZHAO D, LIU Y, et al. An overview of remote sensing of chlorophyll fluorescence [J]. Ocean Science Journal, 2007, 42(1): 49-59. DOI:  10.1007/BF03020910.
[32] WANG K S, CHENG H, DONG L X. A hydrographic comparison of the two sides of the Changjiang plume front [C]// Proceedings of International Symposium on Biochemical Study of the Changjiang Estuary and its Adjacent Coastal Waters of the East China Sea. Beijing: China Ocean Press, 1990:62-75.
[33] 胡方西, 胡辉, 谷国传. 长江口锋面研究 [M]. 上海: 华东师范大学出版社, 2002.
[34] 闫庆. 长江口外锋区浮游植物生物量及其影响因子的观测与数值模拟 [D]. 上海: 上海海洋大学, 2016.
[35] TIAN R C, HU F X, MARTIN J M. Summer nutrient fronts in the Changjiang (Yantze River) estuary [J]. Estuarine, Coastal and Shelf Science, 1993, 37(1): 27-41. DOI:  10.1006/ecss.1993.1039.
[36] 沈志良. 长江口海区理化环境对初级生产力的影响 [J]. 海洋湖沼通报, 1993(1): 47-51.
[37] 周淑青, 沈志良, 李峥, 等. 长江口最大浑浊带及邻近水域营养盐的分布特征 [J]. 海洋科学, 2007, 31(6): 34-42. DOI:  10.3969/j.issn.1000-3096.2007.06.008.
[38] 杨波. 三峡工程对长江口羽状锋区生物地球化学特征的影响 [D]. 山东 青岛: 国家海洋局第一海洋研究所, 2012.
[39] 张传松. 长江口及邻近海域赤潮生消过程特征及其营养盐效应分析 [D]. 山东 青岛: 中国海洋大学, 2008.