中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米电极超低电压场致电离特性研究

陈云 张健 于江江 郑小东

陈云, 张健, 于江江, 郑小东. 硅纳米电极超低电压场致电离特性研究[J]. 华东师范大学学报(自然科学版), 2013, (3): 194-201.
引用本文: 陈云, 张健, 于江江, 郑小东. 硅纳米电极超低电压场致电离特性研究[J]. 华东师范大学学报(自然科学版), 2013, (3): 194-201.
CHEN Yun, ZHANG Jian, YU Jiang-jiang, ZHENG Xiao-dong. Ultralow-voltage field ionization of silicon nano-electrode[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 194-201.
Citation: CHEN Yun, ZHANG Jian, YU Jiang-jiang, ZHENG Xiao-dong. Ultralow-voltage field ionization of silicon nano-electrode[J]. Journal of East China Normal University (Natural Sciences), 2013, (3): 194-201.

硅纳米电极超低电压场致电离特性研究

详细信息
  • 中图分类号: O47

Ultralow-voltage field ionization of silicon nano-electrode

  • 摘要: 用湿法化学刻蚀制备出具有直立结构的硅纳米线,其平均长度为20 m,平均直径100 nm.将该硅纳米线作为电容式电离结构的一维纳米电极,建立场致电离的测试系统,并在常温常压下测试出电离的全伏安特性,得出了一维纳米电极系统气体电离的规律.测试结果表明,利用湿法化学刻蚀制备的硅纳米线作为一维纳米电极,可以大大降低系统的击穿电压,原因在于它具有较高的场增强因子、小尺寸效应以及高的缺陷密度.
  • [1] [1] ZHANG Y, LIU J H, LI X, et al. The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J]. Sensors and Actuators A, 2006, 128: 278-289.

    [2] SUMANASEKERA G U, ADU C K W, FANG S, et al. Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes[J]. Phy Rev Lett, 2000, 85: 1096-1099.

    [3] ZAHAB A, SPINA L, PONCHARAL P, et al. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat[J]. Phy Rev B, 2000, 62: 10000-10003.

    [4] VARGHESE O K, KICHAMBRE P D, GONG D, et al. Gas sensing characteristics of multi-wall carbon nanotubes[J]. Sensors and Actuators B:  Chemical, 2001, 81: 32-41.

    [5] VALENTINI L, ARMENTANO I, KENNY J M, et al. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films[J]. Appl Phys Lett, 2003, 82: 961-963.

    [6] WANG M S, PENG L M, WANG J Y, et al. Electron field emission characteristics and field evaporation of a single carbon nanotube[J]. J Phys Chem B, 2005, 109: 110.

    [7] KENNETH A D, BURGIN T P, CHALAMALA B R. Evaporation of carbon nanotubes during electron field emission[J]. Appl Phys Lett, 2001, 79: 1873.

    [8] WANG Z L, GAO R P, HEER W A D, et al. In situ imaging of field emission from individual carbon nanotubes and their structural damage[J]. Appl Phys Lett, 2002, 80: 856.

    [9] CUI Y, WEI Q Q, PARK H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293: 1289.

    [10] ZHANG Y F, GENG H J, ZHOU Z H, et al. Development of Inorganic Solar Cells by Nanotechnology[J]. Nano-Micro Lett, 2012, 4 (2): 124-134.

    [11] ZHAO F, CHENG G A, ZHENG R T, et al. Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires[J]. Nanoscale Research Letters, 2011, 6: 176.

    [12] LIU Z Q, PAN Z W, SUN L F, et al. Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate[J]. J Phys Chem Solids, 2000, 61: 1171.

    [13] MORALES A M, LIEBER C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279: 208.

    [14] FENG S Q, YU D P, ZHANG H Z, et al. The growth mechanism of silicon nanowires and their quantum confinement effect[J]. J Crys Growth, 2000, 209: 513.

    [15] PENG K Q, HUANG Z P, ZHU J. Fabrication of large-area silicon nanowire p-n junction diode arrays[J]. Adv Mater, 2004, 16: 73-76.

    [16] WAN L J, GONG W L, JIANG K W, et al. Selective formation of silicon nanowires on pre-patterned substrates[J]. Appl Surf Sci, 2009, 255: 3752-3758.

    [17] MODI A, KORATKAR N, LASS E, et al. Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature, 2003, 424: 171-174.

    [18] ZHANG Y, LIU J H, LI X, et al. The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J]. Sens Actuators A, 2005, 125: 15-24.

    [19] LIAO L, LU H B, SHUAI M, et al. A novel gas sensor based on field ionization from ZnO nanowires:  moderate working voltage and high stability[J]. Nanotechnology, 2008, 19: 175501.

    [20] SADEGHIAN R B, KAHRIZI M. A novel miniature gas ionization sensor based on freestanding gold nanowires[J]. Sens Actuators A:  Physical, 2007, 137: 248-255.

    [21] FORBES R G, EDGCOMBE C J, VALDRE U. Some comments on models for field enhancement[J]. Ultramicroscopy, 2003, 95: 57-65.

    [22] RICHTER H, WANG Z P, LEY L. The one phonon Raman spectrum in microcrystalline silicon[J]. Solid State Commun, 1981, 39: 625-629.

    [23] CAMPBELL I H, FAUCHET P M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors[J]. Solid State Commun, 1986, 58: 739-741.

    [24] WANG R P, ZHOU G W, LIU Y L, et al. Raman spectral study of silicon nanowires:  high-order scattering and phonon confinement effects[J]. Phys Rev B, 2000, 61: 16827-16832.

    [25] LI B B, YU D P, ZHANG S L. Raman spectral study of silicon nanowires[J]. Phys Rev B, 1999, 59: 1645-1648.

    [26] PISCANEC S, CANTORO M, FERRARI A C, et al. Robertson. Raman spectroscopy of silicon nanowires[J]. Phys Rev B, 2003, 68: 241312.
  • 加载中
计量
  • 文章访问数:  1775
  • HTML全文浏览量:  53
  • PDF下载量:  1821
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-01
  • 修回日期:  2012-12-01
  • 刊出日期:  2013-05-25

目录

    /

    返回文章
    返回