中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱特征的沉水植物种类识别研究

邹维娜 张利权 袁琳

邹维娜, 张利权, 袁琳. 基于光谱特征的沉水植物种类识别研究[J]. 华东师范大学学报(自然科学版), 2014, (4): 132-140.
引用本文: 邹维娜, 张利权, 袁琳. 基于光谱特征的沉水植物种类识别研究[J]. 华东师范大学学报(自然科学版), 2014, (4): 132-140.
ZOU Wei-na, ZHANG Li-quan, YUAN Lin. Study on species identification of submerged aquatic vegetation based on spectral characteristics[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 132-140.
Citation: ZOU Wei-na, ZHANG Li-quan, YUAN Lin. Study on species identification of submerged aquatic vegetation based on spectral characteristics[J]. Journal of East China Normal University (Natural Sciences), 2014, (4): 132-140.

基于光谱特征的沉水植物种类识别研究

详细信息
  • 中图分类号: Q14;Q178;Q948

Study on species identification of submerged aquatic vegetation based on spectral characteristics

  • 摘要: 沉水植物种类的光谱特征识别可为大尺度遥感监测沉水植被提供种类识别的有效参数.本研究利用高光谱地物光谱仪获取上海市郊最大的天然淡水湖泊淀山湖6种典型沉水植物狐尾藻、竹叶眼子菜、金鱼藻、大茨藻、黑藻和苦草群落冠层的反射光谱,分析不同种类沉水植物的原始光谱和一阶导数光谱特征,通过主成分分析(Principal Components Analysis, PCA)筛选对沉水植物光谱种间差异敏感的植被指数和光谱指数,探寻能够有效识别不同种类水生植物的光谱识别方法.研究结果表明:①不同种类沉水植物的光谱曲线形状在可见光和近红外波段近似,但光谱反射率值差异较大;②光谱指数NAV、REP和NGP是识别6种沉水植物最敏感的特征指数,这些指数综合体现和放大了不同种类沉水植物在形态结构、叶绿素含量、光合和保护色素等方面的特征及所栖居的水体环境特征的种间差异.研究结果可为高光谱遥感影像准确解译与提取沉水植物群落组成、分布和生物多样性的动态变化信息提供理论依据和技术支持.
  • [1] [1] 吴振斌,邱东茹, 贺锋, 等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003, 14(8): 1351-1353.

    [2] MEERHOFF M, MAZZEO N, MOSS B, et al. The structuring role of free-floating versus submerged plants in a sub tropical shallow lake[J]. Aquatic Ecology, 2003, 37: 377-391.

    [3] WILLIAM F J, BARKO J W, BUTLER M G. Shear stress and sediment resuspension in relation to submersed macrophyte biomass [J]. Hydrobiologia, 2004, 515: 181-191.

    [4] DOGAN O K, AKYUREK Z, BEKLIOGLU M. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data [J]. Journal of Environmental Management, 2009, 90: 2138-2143.

    [5] ZHAO D H, JIANG H, YANG T W, et al. Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds [J]. Journal of Environmental Management, 2012, 95(1): 98-107.

    [6] DAVRANCHE A, LEFEBVRE G, POULIN B. Wetland monitoring using classification trees and SPOT-5 seasonal time series [J]. Remote Sensing of Environment, 2010, 114(3): 552-562.

    [7] YUAN L, ZHANG L Q. The spectral responses of submerged plant Vallisneria spiralis with varying biomass using spectroradiometer [J]. Hydrobiologia, 2007, 579: 291-299.

    [8] WILLIAMS D J, RYBICKI N B, LOMBANA A V, et al. Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing [J]. Environmental Monitoring and Assessment, 2003, 81(1-3): 383-392.

    [9] ERIN L H, SHRUTI K, MARGARET E A. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem [J]. Remote Sensing of Environment, 2008, 112(11): 4034-4047.

    [10] ARTIGAS F J, YANG J S. Hyperspectral remote sensing of habitat heterogeneity bewteen tide-restrieted and tide-open areas in the NewJersey Meadow lands [J].Urban Habitats, 2004, 2(1): 112-129.

    [11] BEGET M E, DI BELLA C M. Flooding: The effect of water depth on the spectral response of grass canopies [J]. Journal of Hydrology, 2007, 335(3-4): 285-294.

    [12] ZOU W N, YUAN L, ZHANG L Q. Analyzing the spectral response of submerged aquatic vegetation in a eutrophic lake, Shanghai, China [J]. Ecological Engineering, 2013, 57: 65-71.

    [13] HESTIR E L, KHANNA S, ANDREW M E, et al. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem [J]. Remote Sensing of Environment, 2008, 112(11): 4034-4047.

    [14] WANG C, MENENTI M, STOLL M P, et al. Mapping mixed vegetation communities in salt marshes using airborne spectral data [J]. Remote Sensing of Environment, 2007, 107(4): 559-570.

    [15] FILIPPI A M, JENSEN J R. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification [J]. Remote Sensing of Environment, 2006, 100(4): 512-530.

    [16] SCHMIDT K S, SKIDMORE A K. Spectral discrimination of vegetation types in a coastal wetland [J]. Remote Sensing of Environment, 2003, 85(1): 92-108.

    [17] ZHANG L Q, GAO Z G, ARMITAGE R, et al. Spectral characteristics of plant communities from salt marshes: A case study from Chongming Dongtan, Yangtze estuary, China [J]. Frontiers of Environmental Science and Engineering in China, 2008(2): 187-197.

    [18] CHENG X, LI X P. Long-term changes in nutrients and phytoplankton response in Lake Dianshan, a shallow temperate lake in China [J]. Journal of Freshwater Ecology, 2010, 25(4): 549-554

    [19] 徐霖林,马长安,田伟,等.淀山湖沉水植物恢复重建对底栖动物的影响[J] 复旦学报:自然科学版,2011,50(3) 260-267.

    [20] 吴迪, 岳峰, 罗祖奎, 等.上海大莲湖湖滨带湿地的生态修复[J].生态学报, 2011,31(11):2999-3008.

    [21] TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment, 1979(8): 127-150.

    [22] 邹维娜, 袁琳, 张利权, 等. 盖度与冠层水深对沉水植物水盾草光谱特性的影响[J], 生态学报, 2012, 32(3): 706-714.

    [23] PINNEL N, HEEGE T, ZIMMERMANN S. Spectral discrimination of submergedmacrophytes in lakes using hyperspectral remote sensing data [J]. The International Society for Optical Engineering, 2004, 16: 25-29.

    [24] UNDERWOOD E, MULITSCH M, GREENBERG J, et al. Mapping invasive aquatic vegetation in the Sacramento-San Joaquin Delta using hyperspectral imagery [J]. Environmental Monitoring and Assessment, 2006, 121(1-3): 47-64.

    [25] DURAKO M J. Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses [J]. Aquatic Botany, 2007, 87(1): 83-89.

    [26] ISTVA′ NOVICS V, HONTI M, KOVA′CS A, et al. Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungary) [J]. Aquatic Botany, 2008, 88: 317-330.

    [27] BECKER B L, LUSCH D P, QI J. Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis [J]. Remote Sensing of Environment, 2005, 97(2):238-248.
  • 加载中
计量
  • 文章访问数:  1377
  • HTML全文浏览量:  43
  • PDF下载量:  1940
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2013-10-01
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回