中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2的电化学表征与探究(英)

张贤惠 陈珍莲 陈晓波 黎军

张贤惠, 陈珍莲, 陈晓波, 黎军. MoS2的电化学表征与探究(英)[J]. 华东师范大学学报(自然科学版), 2015, (3): 105-115. doi: 10.3969/j.issn.1000-5641.2015.03.013
引用本文: 张贤惠, 陈珍莲, 陈晓波, 黎军. MoS2的电化学表征与探究(英)[J]. 华东师范大学学报(自然科学版), 2015, (3): 105-115. doi: 10.3969/j.issn.1000-5641.2015.03.013
ZHANG Xian-hui, CHEN Zhen-lian, CHEN Xiao-bo, LI Jun. Characterization of and insight into the electrochemistry of MoS2[J]. Journal of East China Normal University (Natural Sciences), 2015, (3): 105-115. doi: 10.3969/j.issn.1000-5641.2015.03.013
Citation: ZHANG Xian-hui, CHEN Zhen-lian, CHEN Xiao-bo, LI Jun. Characterization of and insight into the electrochemistry of MoS2[J]. Journal of East China Normal University (Natural Sciences), 2015, (3): 105-115. doi: 10.3969/j.issn.1000-5641.2015.03.013

MoS2的电化学表征与探究(英)

doi: 10.3969/j.issn.1000-5641.2015.03.013
基金项目: 

国家自然科学基金(11174301, 21303235); 973计划(2012CB722700);863计划(2013AA050901); 宁波市创新团队(2011B82005)

详细信息
    作者简介:

    张贤惠, 女, 硕士研究生, 研究方向为锂离子电池. E-mail:zhangxianhui@nimte.ac.cn.

    通讯作者:

    陈珍莲, 女,助理研究员, 研究方向为材料物理与化学.

  • 中图分类号: O646.21

Characterization of and insight into the electrochemistry of MoS2

  • 摘要: 结合实验和第一性原理计算,对MoS2首次充放电过程中的第一阶段相变的结构变化进行了研究.研究表明1.1V处的电压平台对应于锂离子嵌入量0.56, 锂离子都是嵌入2H相的八面体空位,与计算出的平台电压值及MoS2的相稳定特性都相吻合.但当锂离子嵌入量超过1.0时, 晶体结构向无定形结构转变,导致后续充电过程中不出现平台特征. 此外,通过对比MoS2和LiCoO2 的嵌入能量项,本文探究了决定正极与负极材料本征电压差的物理机制.}
  • [1]ZHOU X, WAN L J, GUO Y G. Synthesis of MoS$_{2$ nanosheet--graphene

    nanosheet hybrid materials for stable lithium storage[J]. Chemical

    Communications, 2013, 49(18): 1838.
    [2] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe$_3$O$_4$ nanoparticles

    as anode for enhanced Li-ion storage[J]. Journal of Power Sources,

    2012, 217: 85-91.
    [3] CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high

    performance tin-graphene nanocomposites for lithium ion batteries

    [J]. Journal of Power Sources, 2012, 216: 22-27.
    [4] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the

    synthesis of MoS$_2$ nanospheres with excellent Li-ion storage

    properties [J]. Cryst Eng Comm, 2012, 14(24): 8323.
    [5] WINTER M, BRODD R J. What are batteries, fuel cells, and

    supercapacitors [J]. Chem Rev 2004, 104: 4245-4269.
    [6] CHANG K, CHEN W. In situ synthesis of MoS$_{2$/graphene nanosheet

    composites with extraordinarily high electrochemical performance for

    lithium ion batteries [J]. Chemical Communications, 2011, 47(14):

    4252.
    [7] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin

    MoS$_{2$ embranes [J]. Nano Letters, 2011, 11(12): 5148-5153.
    [8] TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical

    structures of tungsten disulphide [J]. Letters to Nature, 1992, 360:

    4-6.
    [9] RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS$_{2$ and

    WS$_{2$ Analogues of graphene [J]. Angewandte Chemie, 2010,

    122(24): 4153-4156.
    [10] WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the

    transition metal dichalcogenides [J]. Materials Research Bulletin,

    1975, 10(5): 363-371.
    [11] WHITTINGHAM M S. The role of ternary phases in cathode reactions [J].

    Journal of The Electrochemical Society, 1976, 123(3): 315-320.
    [12] DINO T, CHRISTIAN P, JAEGERMANN W. Origin of the

    electrochemical potential in intercalation electrodes [J]. J Phys

    Chem B, 2004, 108: 6093-6099.
    [13] WANG Q, LI J. Facilitated lithium storage in MoS$_2$ overlayers supported

    on coaxial carbon nanotubes [J]. J Phys Chem C, 2007, 111:

    1675-1682.
    [14] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical

    MoS$_{2$ microspheres composed of few-layered nanosheets and their

    lithium storage properties [J]. Nanoscale, 2012, 4(1): 95.
    [15] KWON J H, AHN H J, JEON M S, et al. The electrochemical properties of

    Li/TEGDME/MoS$_{2$ cells using multi-wall carbon nanotubes as a

    conducting agent [J]. Research on Chemical Intermediates, 2010,

    36(6/7): 749-759.
    [16] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of

    molybdenum disulfide (MoS$_{2)$ nanocomposites [J]. Energy {\&

    Environmental Science, 2014, 7(1): 209.
    [17] CATHERINE M. ZELENSKI, DORHOUT P K. Template synthesis of

    near-monodisperse [J]. J Am Chem Soc 1998, 120: 734-742.
    [18] XIANHUI CHEN, FAN R. Low-temperature hydrothermal synthesis of

    transition [J]. Chem Mater, 2001, 13: 802 -805.
    [19] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J].

    Nature, 2001, 414(6861): 332-337.
    [20] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS$_2$/amorphous

    carbon composites with high capacity and excellent stability as

    anode materials for lithium ion batteries [J]. Journal of Materials

    Chemistry, 2011, 21(17): 6251.
    [21] YANG L, WANG S, MAO J, et al. Hierarchical MoS$_{2$/polyaniline

    nanowires with excellent electrochemical performance for lithium-ion

    batteries [J]. Advanced Materials, 2013, 25(8): 1180-1184.
    [22] MAP Y, HAERING R R. Structural destabilization induced by lithium

    intercalation in MoS$_{2$ andrelated compounds [J]. Canadian

    Journal of Physics, 1983, 61: 76-84
    [23] DU G, GUO Z, WANG S, et al. Superior stability and high capacity of

    restacked molybdenum disulfide as anode material for lithium ion

    batteries [J]. Chemical Communications, 2010, 46(7): 1106.
    [24] GORDON R A, YANG D, CROZIER E D, et al. Structures of exfoliated single

    layers of WS$_{2$, MoS$_{2$, and MoSe$_{2$ in aqueous suspension

    [J]. Physical Review B, 2002, 65(12): 125407.
    [25] CHEN X, CHEN Z, LI J. Critical electronic structures controlling phase

    transitions induced by lithium ion intercalation in molybdenum

    disulphide [J]. Chinese Science Bulletin, 2013, 58(14): 1632-1641.
    [26] CHEN X, HE J, SRIVASTAVA D, et al. Electrochemical cycling

    reversibility of LiMoS$_{2$ using first-principles calculations

    [J]. Applied Physics Letters, 2012, 100(26): 263901.
    [27] JOHN P, KIERON B, ERNZERHOF M. Generalized gradient

    approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
    [28] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the

    liquid-metal-amorphous-semiconductor transition in germanium [J].

    Physical Review B, 1994, 49(20): 251-269.
    [29] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio

    total-energy calculations using a plane-wave basis set [J]. Physical

    Review B, 1996, 54(16): 169-186.
    [30] BLOCHL P E. Projector augmented-wave method [J]. Physical Review B,

    1994, 50(24): 953-979.
    [31] GRIMME S. Semiempirical GGA-type density functional constructed with a

    long-range dispersion correction [J]. Journal of Computational

    Chemistry, 2006, 27(15): 1787-1799.
    [32] CHEN Z, LI J, ZHANG Z. First principles investigation of electronic

    structure change and energy transfer by redox in inverse spinel

    cathodes LiNiVO$_{4$ and LiCoVO$_{4$ [J]. Journal of Materials

    Chemistry, 2012, 22(36): 18968.
    [33] NEUGEBAUER J, SCHEFFLER M. Adsorbate-substrate and adsorbate-adsorbate

    interactions of Na and K adlayers on Al(111) [J]. Physical Review B,

    1992, 46(24): 16067-16080.
    [34] MAKOV G, PAYNE M. Periodic boundary conditions in ab initio

    calculations [J]. Physical Review B, 1995, 51(7): 4014-4022.
    [35] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated

    MoS$_{2$ nanorods with enhanced lithium storage properties [J].

    Electrochemistry Communications, 2012, 20: 7-10.
    [36] HWANG H, KIM H, CHO J. MoS$_{2$ nanoplates consisting of disordered

    graphene-like layers for high rate lithium battery anode materials

    [J]. Nano Letters, 2011, 11(11): 4826-4830.
    [37] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled

    MoS$_{2$-carbon nanostructures: influence of nanostructuring and

    carbon on lithium battery performance [J]. Journal of Materials

    Chemistry, 2012, 22(26): 12988.
    [38] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide

    (MoS$_{2)$ for lithium ion battery applications [J]. Materials

    Research Bulletin, 2009, 44(9): 1811-1815.
    [39] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS$_{2$ in

    different potential ranges [J]. Electrochimica Acta, 2012, 81:

    155-160.
    [40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an

    ultrahigh energy density [J]. Nano Letters, 2010, 10(12): 4863-4868.
    [41] GOODENOUGH J B, KIM Y. Challenges for rechargeable li batteries [J].

    Chemistry of Materials, 2010, 22(3): 587-603.
    [42] CHEN J, TAO Z L, SUO L. Lithium intercalation in

    open-ended TiS$_{2 $ nano-tubes [J]. Angewandte Chemie, 2003,

    115(19): 2197-2201.
    [43] JULIEN C M. Lithium intercalated compounds charge transfer and related

    properties [J]. Materials Science and Engineering R, 2003, 40:

    47-102.
    [44] DAHN J R, ZHENG T, LIU Y, et al. Mechanisms for lithium insertion in

    carbonaceous materials [J]. Science, 1995, 270(5236): 590-593.
  • 加载中
计量
  • 文章访问数:  1247
  • HTML全文浏览量:  55
  • PDF下载量:  1808
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 刊出日期:  2015-05-25

目录

    /

    返回文章
    返回