中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声环境下纠缠相干态的量子关联特性

杨志刚

杨志刚. 噪声环境下纠缠相干态的量子关联特性[J]. 华东师范大学学报(自然科学版), 2016, (4): 111-117. doi: 10.3969/j.issn.1000-5641.2016.04.013
引用本文: 杨志刚. 噪声环境下纠缠相干态的量子关联特性[J]. 华东师范大学学报(自然科学版), 2016, (4): 111-117. doi: 10.3969/j.issn.1000-5641.2016.04.013
YANG Zhi-gang. The quantum correlation evolution properties of entangled coherent states in noisy environments[J]. Journal of East China Normal University (Natural Sciences), 2016, (4): 111-117. doi: 10.3969/j.issn.1000-5641.2016.04.013
Citation: YANG Zhi-gang. The quantum correlation evolution properties of entangled coherent states in noisy environments[J]. Journal of East China Normal University (Natural Sciences), 2016, (4): 111-117. doi: 10.3969/j.issn.1000-5641.2016.04.013

噪声环境下纠缠相干态的量子关联特性

doi: 10.3969/j.issn.1000-5641.2016.04.013
基金项目: 

国家自然科学基金(11174081, 11034002, 11134003, 11104075); 国家重点基础研究发展计划(2011CB921602, 2012CB821302)

详细信息
    通讯作者:

    杨志刚, 男, 硕士研究生, 研究方向为量子关联. E-mail: 779052316@qq.com

The quantum correlation evolution properties of entangled coherent states in noisy environments

  • 摘要: 着重研究了在振幅噪声环境下两体纠缠相干态(Entangled Coherent State, ECS)与贝尔态的量子关联演化.用形成纠缠熵(Entanglement of Formation, E)、量子失协(Quantum Discord, QD)、测量诱导扰动(Measurement-Induced Disturbance,MID)及几何量子失协(Geometric Measure of Quantum Discord, GQD)来计算纠缠相干态在噪声环境下的量子关联演化, 发现纠缠相干态的量子失协随着~$r$~先减小再增长, 然后又逐渐衰减至~0, 其测量诱导扰动则随着~$r$~单调衰减到0, 而量子失协以及测量诱导的扰动在振幅衰减影响下比形成纠缠熵演化更加持久. 通过对比分析, 发现对称与非对称噪声通道下贝尔(Bell)态不一定比纠缠相干态的纠缠度更高, 纠缠相干态以及贝尔态的量子关联影响区别不是很明显.
  • [1]

    [ 1 ] OLLIVIER H, ZUREK W H. A measure of the quantumness of correlation [J]. Phys Rev Lett, 2001, 88: 017901.
    [ 2 ] VEDRAL V. Classical correlations and entanglement in quantum measurements [J]. Phys Rev Lett, 2003, 90: 050401.
    [ 3 ] DAKIC B, VEDRAL V, BRUKNER C. Necessary and sufficient condition for nonzero quantum discord [J]. Phys Rev Lett, 2010, 105: 190502.
    [ 4 ] YE B L, LIU Y M, LIU X S, et al. Quantum correlations in a family of bipartite qubit-qutrit separable states [J]. Chin Phys Lett, 2013, 30: 020302.
    [ 5 ] DATTA A, GHARIBIAN S. Measurement-induced disturbances and nonclassical correlations of Gaussian states [J]. Phys Rev A, 2009, 79: 042325.
    [ 6 ] ZUREK W H. Quantum discord and Maxwell’s demons [J]. Phys Rev A, 2003, 67: 012320.
    [ 7 ] TANG H J, LIU Y M, CHEN J L, et al. Analytic expressions of discord and geometric discord in Werner derivatives [J]. Quant Inf Proc, 2014, 13(6): 1331-1344.
    [ 8 ] ALI M, RAU A R P, ALBER G. Quantum discord for two-qubit X states [J]. Phys Rev A, 2010, 81: 042105.
    [ 9 ] LU X M, MA J, XI Z, et al. Optimal measurements to access classical correlations of two-qubit states [J]. Phys Rev A, 2011, 83: 012327.
    [ 10 ] LUO S. Using measurement-induced disturbance to characterize correlations as classical or quantum [J]. Phys Rev A, 2008, 77:022301.
    [ 11 ] XU S, SONG X K, YE L. Measurement-induced disturbance and negativity in mixed-spin XXZ model [J]. Quant Inf Proc, 2014, 13(4): 1–12.
    [ 12 ] ESPOUKE P, PEDRAM P. Quantum correlation evolution of GHZ and W states under noisy channels using ameliorated measurement-induced disturbance [J]. Quant Inf Proc, 2015, 14(1): 303-319.
    [ 13 ] RAO B R, SRIKANTH R. Quantumness of noisy quantum walks: A comparison between measurement-induced [J]. Phys Rev A, 2008, 83: 064302.
    [ 14 ] CHAI C L. Two-mode nonclassical state via superposition of two-mode coherent states [J]. Phys Rev A, 1992, 46: 7187.
    [ 15 ] WANG X, SANDERS B C. Multipartite entangled coherent states [J]. Phys Rev A, 2001, 62: 012303. [ 16 ] LUND A P, RALPH T C, HASELGROVE H L. Fault-tolerant linear optical quantum computing with small amplitude coherent states [J]. Phys Rev Lett, 2008, 100: 030503.
    [ 17 ] WANG X. Quantum teleportation of entangled coherent states [J]. Phys Rev A, 2001, 64: 022302.
    [ 18 ] JEONG H, KIM M S. Efficient quantum computation using coherent states [J]. Phys Rev A, 2002, 65: 042305. [ 19 ] GE R C, GONG M, LI C F, et al. Quantum correlation and classical correlation dynamics in the spin-boson model [J]. Phys Rev A, 2010, 81: 064103.
    [ 20 ] PAZ J P, RONCAGLIA A J. Redundancy of classical and quantum correlations during decoherence [J]. Phys Rev A, 2009, 80: 042111.
    [ 21 ] XIE C M, LIU Y M, LI G F, et al. A note on quantum correlations in Werner states under two collective noises [J]. Quant Inf Proc, 2014, 13(12): 2713-2718.
    [ 22 ] SONG X T, LI H W, ZHANG C M, et al. Analysis of faraday-michelson quantum key distribution system with unbalanced attenuation [J]. Chin Opt Lett, 2015, 13: 012701.
    [ 23 ] MODI K, PATEREK T, SON W, et al. Unified view of quantum and classical correlations [J]. Phys Rev Lett, 2010, 104: 080501.
    [ 24 ] PARK K, JEONG H. Entangled coherent states versus entangled photon pairs for practical quantum information processing [J]. Phys Rev A, 2010, 82: 062325.
    [ 25 ] YAO Y, LI H W, YIN Z Q, et al. The effect of channel decoherence on entangled coherent states: A theoretical analysis [J]. Phys Lett A, 2011, 375: 3762-3769.

  • 加载中
计量
  • 文章访问数:  203
  • HTML全文浏览量:  20
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-24
  • 刊出日期:  2016-07-25

目录

    /

    返回文章
    返回