中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二向反射模型在土地覆被制图中的应用

杨雪峰 叶茂 毛东雷

杨雪峰, 叶茂, 毛东雷. 二向反射模型在土地覆被制图中的应用[J]. 华东师范大学学报(自然科学版), 2017, (1): 113-124. doi: 10.3969/j.issn.1000-5641.2017.01.013
引用本文: 杨雪峰, 叶茂, 毛东雷. 二向反射模型在土地覆被制图中的应用[J]. 华东师范大学学报(自然科学版), 2017, (1): 113-124. doi: 10.3969/j.issn.1000-5641.2017.01.013
YANG Xue-feng, YE Mao, MAO Dong-lei. Application of BRDF model in land cover mapping[J]. Journal of East China Normal University (Natural Sciences), 2017, (1): 113-124. doi: 10.3969/j.issn.1000-5641.2017.01.013
Citation: YANG Xue-feng, YE Mao, MAO Dong-lei. Application of BRDF model in land cover mapping[J]. Journal of East China Normal University (Natural Sciences), 2017, (1): 113-124. doi: 10.3969/j.issn.1000-5641.2017.01.013

二向反射模型在土地覆被制图中的应用

doi: 10.3969/j.issn.1000-5641.2017.01.013
基金项目: 

国家自然科学基金 41461045

详细信息
    作者简介:

    杨雪峰, 男, 硕士, 讲师.研究方向为干旱区资源环境遥感技术应用研究. E-mail: geomanyxf@sina.com

    通讯作者:

    叶茂, 女, 博士, 教授, 主要从事干旱区水资源环境研究. E-mail: 867464686@qq.com

  • 中图分类号: TP79

Application of BRDF model in land cover mapping

  • 摘要: 植被的反射异质性特征可以反映植被的结构和光谱特性, 有助于更有效地识别植被.在塔里木河下游开展的研究中, 使用了MISR的多角度观测数据, 利用核驱动和RPV模型反演获取地表BRDF信息, 使用SVM方法对MISR天底角反射率数据和BRDF信息组合进行土地覆被分类研究, 对比分析了BRDF对分类效果的影响.发现:① BRDF信息可以为半干旱区土地覆被制图提供附加的有用信息, 提高制图的精度. ②核驱动模型和RPV模型都能较好地模拟研究区地表反射的状况. ③空间结构差异较大的草地和林地类型使用BRDF信息后的用户精度明显提高.
  • 图  1  研究区位置示意图

    Fig.  1  The study area

    图  2  MISR观测角度和太阳位置

    Fig.  2  The geometry of illumination and observation

    图  3  样点分布

    Fig.  3  The distribution of test samples

    图  4  核驱动模型参数

    Fig.  4  Kernel driven models parameters

    图  5  RPV模型参数

    Fig.  5  RPV model parameters

    图  6  各土地覆被类型核驱动模型参数平均值

    Fig.  6  Average of kernel driven models parameters of each land cover type

    图  7  各土地覆被类型RPV模型参数平均值

    Fig.  7  Average of RPV model parameters of each land cover type

    图  8  数据集的分类结果

    Fig.  8  Classification result of SVM

    表  1  土地覆被类型定义

    Tab.  1  Land-cover classification system

    土地类型样地数量/个覆盖度/%描述
    灌木2034>5灌木, 半灌木植物群落
    林地1154>5胡杨林
    水体950水库, 天然水体
    未利用地670< 5沙地, 盐碱地
    耕地383>40农田
    草地206>5盐生草本植物群落
    注:本处覆盖度是指在一个MISR像元大小范围内(即275×275 m2), 所有植被包括胡杨林、灌木、盐生草本植物和农作物垂直投影面积占像元面积的百分比.不同土地覆被类型像元中的植被可能包含多种植被类型.
    下载: 导出CSV

    表  2  RPV和核驱动模拟的精度评价

    Tab.  2  Accuracy assessment of RPV and kernel driven model

    RPV模型核驱动模型
    RMSE均值0.007 7180.007 238
    RMSE标准差0.002 390.002 9
    下载: 导出CSV

    表  3  MISR多角度观测数据集

    Tab.  3  MISR multi-angle observation DataSet

    数据集描述
    天底角AN相机的蓝、绿、红光和近红外共4个波段的地表反射率数据
    天底角+ $k$ , $r$ 0, $b$ }AN相机的4个波段的地表反射率数据以及RPV
    模型反演的 $k$ , $r_0$ , $b$ 值
    天底角+ $f_{\rm iso}$ , $f_{\rm vol}$ , $f_{\rm geo}$ }AN相机的4个波段的地表反射率数据以及核驱动
    模型反演的 $f_{\rm iso}$ , $f_{\rm vol}$ , $f_{\rm geo}$ 值
    天底角+ $f_{\rm iso}$ , $f_{\rm vol}$ , $f_{\rm geo}$ + $k$ , $r$ 0, $b$ AN相机的4个波段的地表反射率数据以及核驱动模型反演的 $f_{\rm iso}$ , $f_{\rm vol}$ , $f_{\rm geo}$ 值
    和RPV模型反演的 $k$ , $r_0$ , $b$ 值
    下载: 导出CSV

    表  4  SVM法使用天底角数据集分类的混淆矩阵

    Tab.  4  Confusion matrix of SVM on nadir DataSet

    类型灌木林地水体未利用地耕地草地总数用户精度
    灌木1 1751140363101 3380.88
    林地464315016007950.40
    水体0270000720.97
    未利用地15600301014580.66
    耕地400222832370.96
    草地5819070441280.34
    总数185745070362231583 028
    生产者精度0.630.701.000.830.990.76 0.704 425
    下载: 导出CSV

    表  5  SVM法使用天底角_RPV模型参数数据集分类的混淆矩阵

    Tab.  5  Confusion matrix of SVM on nadir plus RPV model parameters DataSet

    类型灌木林地水体未利用地耕地草地总数用户精度
    灌木1 0811850513181 3380.81
    林地266506020037950.64
    水体1069011720.96
    未利用地110150329044580.72
    耕地600422612370.95
    草地3418021731280.57
    总数1498724694062311003 028
    生产者精度0.720.701.000.810.980.73 0.754 293
    下载: 导出CSV

    表  6  SVM法使用天底角_核驱动模型参数分类的混淆矩阵

    Tab.  6  Confusion matrix of SVM on nadir plus kernel driven model parameters DataSet

    类型灌木林地水体未利用地耕地草地总数用户精度
    灌木1 1221460535121 3380.84
    林地299472022027950.59
    水体1170000720.97
    未利用地11370338004580.74
    耕地400222922370.97
    草地3619020711280.55
    总数157564570417234873 028
    生产者精度0.710.731.000.810.98 0.82 0.760 238
    下载: 导出CSV

    表  7  SVM法使用天底角_核驱动模型参数_RPV模型参数分类的混淆矩阵

    Tab.  7  Confusion matrix of SVM on nadir plus kernel driven and RPV model parameters DataSet

    类型灌木林地水体未利用地耕地草地总数用户精度
    灌木1 0891770483211 3380.81
    林地257517018037950.65
    水体2069010720.96
    未利用地114140324064580.71
    耕地700222712370.96
    草地2820012771280.60
    总数1497728693932331083 028
    生产者精度0.730.711.000.820.97 0.71 0.760 568
    下载: 导出CSV
  • [1] ROSS J. The Radiation Regime and Architecture of Plant Stands[M]. Boston, MA: W Junk, 1981.
    [2] MYNENI R B, ASRAR G. Radiative transfer in three-dimensional atmosphere vegetation media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 49: 585-598. doi:  10.1016/0022-4073(93)90003-Z
    [3] CHEN J M, CIHLAR J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33: 777-787. doi:  10.1109/36.387593
    [4] MARTONCHIK J V, BRUEGGE C J, STRAHLER A H. A review of reflectance nomenclature used in remote sensing[J]. Remote Sensing Reviews, 2000, 19: 9-20. doi:  10.1080/02757250009532407
    [5] LI X, STRAHLER A H. Geometric-optical modeling of a conifer forest canopy[J]. IEEE Transactions on Geoscience & Remote Sensing, 1985, ge-23(5): 705-721. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4072365&pageNumber%3D33832%26rowsPerPage%3D100
    [6] ASNER G P. Contributions of multi-view angle remote sensing to land-surface and biogeochemical research[J]. Remote Sensing Review, 2000, 18: 137-162. doi:  10.1080/02757250009532388
    [7] LIANG S, STRAHLER A H. Land surface bi-directional reflectance distribution function (BRDF): Recent advances and future prospects[J]. Remote Sensing Reviews, 2000, 18: 83-511.
    [8] MARTONCHIK J V, PINTY B, VERSTRAETE M M. Note on: An improved model of surface BRDF-atmospheric coupled radiation[J]. IEEE Transactions on Geosciences and Remote Sensing, 2002, 40: 1637-1639. doi:  10.1109/TGRS.2002.802505
    [9] WANNER W, LI X, STRAHLER A H. On the derivation of kernels for kernel driven models of bidirectional reflectance[J]. Journal of Geophysical Research, 1995, 100: 21077-21090. doi:  10.1029/95JD02371
    [10] ROUJEAN J L, LEROY M, DESCHAMPS P Y. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data[J]. Journal of Geophysical Research, 1992, 97: 20455-20468. doi:  10.1029/92JD01411
    [11] LOVELAND T R, REED B C, BROWN J F, et al. Development of a global land cover characteristics database and IGBP DIScover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000, 21: 1303-1330. doi:  10.1080/014311600210191
    [12] LANGLEY S K, CHESHIRE H M, HUMES K S. A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland[J]. Journal of Arid Environments, 2001, 49: 401-411. doi:  10.1006/jare.2000.0771
    [13] CHOPPING M J, RANGO A, RITCHIE J C. Improved semi-arid community type differentiation with the NOAA AVHRR via exploitation of the directional signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 1132-1149. doi:  10.1109/TGRS.2002.1010900
    [14] SU L, CHOPPING M J, RANGO A, et al. Differentiation of semi-arid vegetation types based on multi-angular observations from MISR and MODIS[J]. International Journal of Remote Sensing, 2007, 28: 1419-1424. doi:  10.1080/01431160601085995
    [15] XAVIER A S, GALVÃO L S. View angle effects on the discrimination of selected Amazonian land cover types from a principal-component analysis of MISR spectra[J]. International Journal of Remote Sensing, 2005, 26: 3797-3811. doi:  10.1080/09500340500106931
    [16] LIESENBERG V, GALVÃO L S, PONZONI F J. Variations in reflectance with seasonality and viewing geometry: Implications for classification of Brazilian savanna physiognomies with MISR/Terra data[J]. Remote Sensing of Environment, 2007, 107(1/2): 276-286. http://www-misr.jpl.nasa.gov/mission/pubs/fulltext/liesenberg2007.pdf
    [17] 阿布都沙拉木⋅加拉力丁, 克力木⋅买买提, 海米提⋅依米提.塔里木河流域胡杨保护区土地覆盖变化研究[J].干旱区资源与环境, 2010, 24(1): 154-157. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201001031.htm
    [18] BUHE A, TSUCHIYA K, KANEKO M, et al. Land cover of oases and forest in XinJiang, China retrieved from ASTER data[J]. Advances in Space Research, 2007, 39(1): 39-45. doi:  10.1016/j.asr.2006.02.056
    [19] 黄粤, 包安明, 王士飞, 等.间歇性输水影响下的2001-2011年塔里木河下游生态环境变化[J].地理学报, 2013, 68(9): 1251-1262. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201309009.htm
    [20] DINER D J, MARTONCHIK J V, BOREL C, et al. Multi-angle Imaging Spectro-Radiometer Level Surface Retrieval Algorithm Theoretical Basis Document[EB/OL]. [2016-02-01]. http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/MISR/atbd-misr-10.pdf.
    [21] DINER D, BECKERT J, REILLY T, et al. Multi-angle Imaging Spectro Radiometer (MISR):Instrument description and experiment overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1072-1087. doi:  10.1109/36.700992
    [22] RAHMAN H, DEDIEU G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum[J]. International Journal of Remote Sensing, 1994, 15(1): 123-143. doi:  10.1080/01431169408954055
    [23] RAHMAN H, PINTY B, VERSTRAETE M M. Coupled surface-atmosphere reflectance (CSAR) model 2.Semiempirical surface model usable with NOAA Advanced Very High 93 Resolution Radiometer data[J]. Journal of Geophysical Research, 1993, 98: 20791-20801. doi:  10.1029/93JD02072
    [24] MARTONCHIK, JOHN V. Determination of aerosol optical depth and land surface directional reflectances using multiangle imagery[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D14): 17015-17022. doi:  10.1029/96JD02444
    [25] ROBERTS G. A review of the application of BRDF models to infer land cover parameters at regional and global scales[J]. Progress in Physical Geography, 2001, 25(4): 483-511. doi:  10.1191/030913301701543154
    [26] VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
    [27] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: A review[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2011, 66(3): 247-259. https://www.researchgate.net/profile/Giorgos_Mountrakis/publication/222302561_Support_vector_machines_in_remote_sensing_A_review/links/004635228ff86ae1ea000000.pdf
    [28] CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. Acm Transactions on Intelligent Systems & Technology, 2011, 2(3): 389-396. http://dame.dsf.unina.it/documents/libsvm.pdf
    [29] LUCHT W, SCHAAF C B, STRAHLER A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(2): 977-998. http://web.gps.caltech.edu/~vijay/Papers/BRDF/lucht-etal-00.pdf
    [30] CHOPPING M J.Testing LiSK BRDF models over a semi-arid grassland region with visible and near-infrared ATSR-2 and AVHRR data[J].International Journal of Remote Sensing, 2001, 22(17): 3533-3552. doi:  10.1080/01431160010007024
    [31] LAVERGNE T, KAMINSKI T, PINTY B, et al. Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes[J]. Remote Sensing of Environment, 2007, 107(1/2): 362-375. https://www.researchgate.net/profile/Bernard_Pinty/publication/222570457_Application_to_MISR_land_products_of_an_RPV_model_inversion_package_using_adjoint_and_Hessian_codes._Remote_Sens._Environ._107(1-2)362-375/links/0912f510656532ff99000000.pdf
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  122
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回