中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光在银膜表面诱导亚波长周期条纹的超快成像研究

郗慧霞 周侃 贾天卿 孙真荣

郗慧霞, 周侃, 贾天卿, 孙真荣. 飞秒激光在银膜表面诱导亚波长周期条纹的超快成像研究[J]. 华东师范大学学报(自然科学版), 2017, (2): 89-96. doi: 10.3969/j.issn.1000-5641.2017.02.012
引用本文: 郗慧霞, 周侃, 贾天卿, 孙真荣. 飞秒激光在银膜表面诱导亚波长周期条纹的超快成像研究[J]. 华东师范大学学报(自然科学版), 2017, (2): 89-96. doi: 10.3969/j.issn.1000-5641.2017.02.012
XI Hui-xia, ZHOU Kan, JIA Tian-qing, SUN Zhen-rong. Ultrafast imaging of femtosecond laser-induced periodic ripples on the surface of silver film[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 89-96. doi: 10.3969/j.issn.1000-5641.2017.02.012
Citation: XI Hui-xia, ZHOU Kan, JIA Tian-qing, SUN Zhen-rong. Ultrafast imaging of femtosecond laser-induced periodic ripples on the surface of silver film[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 89-96. doi: 10.3969/j.issn.1000-5641.2017.02.012

飞秒激光在银膜表面诱导亚波长周期条纹的超快成像研究

doi: 10.3969/j.issn.1000-5641.2017.02.012
基金项目: 

国家自然科学基金 11474097

详细信息
    作者简介:

    郗慧霞, 女, 硕士研究生, 研究方向为飞秒激光诱导周期条纹.E-mail:xihuixia@sina.cn

    通讯作者:

    贾天卿, 男, 教授, 博士生导师, 研究方向为飞秒激光诱导微纳结构及其光学特性.E-mail:tqjia@phy.ecnu.edu.cn

  • 中图分类号: O436

Ultrafast imaging of femtosecond laser-induced periodic ripples on the surface of silver film

  • 摘要: 采用440 nm空间分辨、亚皮秒时间分辨的泵浦探测成像技术,本文研究了800 nm飞秒激光脉冲照射银膜表面后亚波长周期条纹的形成动力学.分析了1~6个飞秒脉冲照射下银膜表面条纹结构的演化过程.第一个激光脉冲在薄膜表面诱导凹槽等缺陷结构;第二个激光脉冲以后表面开始出现亚波长周期条纹,并且在更多脉冲照射时进行纵向和横向生长.条纹在50~70 ps以后开始出现,随延迟时间增加不断加深变长,在演化过程中条纹位置保持不变;形成过程在1 000 ps内基本结束.研究结果表明,飞秒激光在薄膜表面诱导凹槽等缺陷结构在后面的激光脉冲照射表面过程中激发了表面等离激元,进而导致的周期性能量沉积在亚波长周期条纹形成过程中起了关键作用,材料表面的熔化导致了之前形成的条纹变浅以及部分消失.
  • 图  1  超快时间分辨的泵浦探测成像实验装置图

    BS: 分束片; DL: 延迟线; 插图: 加凹透镜和不加凹透镜时物镜物平面的烧蚀斑

    Fig.  1  Experimental setup of the time-resolved imaging

    BS: beam splitter; DL: delay line; Inset: ablated spots on the object plane with or without the concave lens, respectively

    图  2  1~6个飞秒激光照射几秒之后的表面形貌 (白色双向箭头是激光偏振方向)

    Fig.  2  Optical micrographs of laser-induced surface structures observed several seconds after irradiation by 1 to 6 pulses (the horizontal arrow in (a) shows the laser polarization direction)

    图  3  第一个飞秒激光脉冲照射后不同延迟时间样品表面形貌的光学显微照片图, (e) 和 (f) 表示的是同一光斑的图像, 图标代表图片是在泵浦光照射几秒之后测得的

    Fig.  3  Optical micrographs of sample surface irradiated by the first pump pulse at different delay times, (e) and (f) are the images of same spot, where the label " $\infty $ " means the picture was observed a few seconds after the irradiation of pump pulse

    图  4  第二个飞秒激光脉冲照射后不同延迟时间样品表面形貌的光学显微照片

    Fig.  4  Optical micrographs of sample surface irradiated by the second pump pulse at different delay times

    图  5  第二个脉冲飞秒激光照射过程中同一光斑的光学显微图像, "before" "after"分别表示脉冲打到样品上几秒"之前"和"之后"

    Fig.  5  Optical images at the same spot, where the pictures labeled "before" and "after" were obtained a few seconds before or after the arrival of the second pump pulse, respectively

    图  6  (a) 第三个脉冲飞秒激光照射后同一光斑的光学图像, "before"、"after"分别表示脉冲打到样品上不同延迟时间"之前"和"之后"的图像; (b) 表示的是沿着图 6(a) 中对同一位置标记的红色箭头方向的CCD像素的强度分布

    Fig.  6  (a) The optical images at the same spot, where the pictures labeled "before" and "after" were obtained a few seconds before or after the arrival of the second pump pulse, respectively, the respective arrows in (a) mark the same position; (b) Shows the intensity of CCD pixels along the arrows in (a)

  • [1] BIRNBAUM M. Semiconductor surface damage produced by Ruby lasers[J]. J Appl Phys, 1965, 36(11):3688-3689. doi:  10.1063/1.1703071
    [2] VOROBYEV A Y, GUO C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 2013, 7(3):385-407. doi:  10.1002/lpor.201200017/references
    [3] BAO Z J, WANG C W, ZHANG Y, et al. Modification of wettability of stainless steel by picosecond laser surface microstructuring[J] Photonics Research, 2015, 3(4):180-183. doi:  10.1364/PRJ.3.000180
    [4] 王浩竹, 杨丰赫, 杨帆, 等.飞秒激光在金属钼表面诱导产生纳米量级周期条纹结构的研究[J].中国激光, 2015, 42(1):99-105. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201501013.htm
    [5] EMMONY D C, HOWSON R P, WILLIS L J. Laser mirror damage in germanium at 10.6 um[J]. Appl Phys Lett, 1973, 23:598-600. doi:  10.1063/1.1654761
    [6] SIPE J E, YOUNG J F, PRESTON J S, et al. Laser-induced periodic surface structure I Theory[J]. Phys Rev B, 1983, 27(2):1141-1154. doi:  10.1103/PhysRevB.27.1141
    [7] SHIMOTSUMA Y, KAZANSKY P, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Phys Rev Lett, 2003, 91(24):247405. DOI: 10.1103/phsRevLett.91.247405.
    [8] BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Appl Phys Lett, 2003, 82(25):4462-4464. doi:  10.1063/1.1586457
    [9] MIYAJI G, MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Opt Express, 2008, 16:16265-16271. doi:  10.1364/OE.16.016265
    [10] JIA X, JIA T Q, DING L E, et al. Complex periodic micro/nanostructures on 6 H-SiC crystal induced by the interference of three femtosecond laser beams[J]. Opt Lett, 2009, 34(6):788-790. doi:  10.1364/OL.34.000788
    [11] MIYAJI G, MIYAZAKI K, ZHANG K F, et al. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water[J]. Opt Express, 2012, 20:14848-14856. doi:  10.1364/OE.20.014848
    [12] HUANG M, ZHAO F L, CHENG Y, et al. Origin of laser-induced near subwavelength ripples:Interference between surface plasmons and incident Laser[J]. ACS Nano, 2009, 12(3):4062-4070. https://www.researchgate.net/publication/40755837_Origin_of_Laser-Induced_Near-Subwavelength_Ripples_Interference_between_Surface_Plasmons_and_Incident_Laser
    [13] BONSE J, KRUGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. J Appl Phys, 2010, 108(3):034903. DOI: 10.1063/1.3456501.
    [14] BONSE J, ROSENFELD A, KRUGER J. On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond laser pulses[J]. J Appl Phys, 2009, 106(10):104910. DOI: 10.1063/1.3261734.
    [15] DUFFT D, ROSENFELD A, DAS S K, et al. Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO[J]. J Appl Phys, 2009, 105:034908. DOI: 10.1063/1.3074106.
    [16] HWANG T Y, VOROBYEV A Y, GUO C L. Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals[J]. Appl Phys Lett, 2009, 95:123111. DOI: 10.1063/1.3222937.
    [17] WANG J C, GUO C L. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Appl Phys Lett, 2005, 87:251914. DOI: 10.1063/1.2146067.
    [18] WANG J C, GUO C L.Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. J Appl Phys, 2007, 102(5):053522. DOI: 10.1063/1.2776004.
    [19] DOWNER M C, FORK R L, SHANK C V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface[J]. J Opt Soc Am B, 1985(2):595-599.
    [20] HOHM S, ROSENFELD A, KRUGER J, et al. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica[J]. Appl Phys Lett, 2013, 102(5):054102. DOI: 10.1063/1.4790284.
    [21] MURPHY R D, TORRALVA B, ADAMS D P, et al. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si[J]. Appl Phys Lett, 2013, 103(14):141104. DOI: 10.1063/1.4823588.
    [22] JIA X, JIA T Q, PENG N N, et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging[J]. J Appl Phys, 2014, 115(14):143102. DOI: 10.1063/1.4870445.
    [23] JIA X, YUAN Y H, YANG D Q, et al. Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs[J]. Chinese Optics Letters, 2014, 12(11):113203. DOI: 10.3788/COL201412.113203.
    [24] 王振林.表面等离激元研究新进展[J], 物理学进展, 2009, 29(3):287-324. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ200903004.htm
  • 加载中
图(6)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  60
  • PDF下载量:  671
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回