中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A negatively charged VSiON center for implementation as qubit

Yu-hao SHEN Zheng TANG Wei PENG

沈宇皓, 唐政, 彭伟. 可用作量子比特的一种负价态VSiON缺陷中心[J]. 华东师范大学学报(自然科学版), 2017, (2): 97-106. doi: 10.3969/j.issn.1000-5641.2017.02.013
引用本文: 沈宇皓, 唐政, 彭伟. 可用作量子比特的一种负价态VSiON缺陷中心[J]. 华东师范大学学报(自然科学版), 2017, (2): 97-106. doi: 10.3969/j.issn.1000-5641.2017.02.013
SHEN Yu-hao, TANG Zheng, PENG Wei. A negatively charged VSiON center for implementation as qubit[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 97-106. doi: 10.3969/j.issn.1000-5641.2017.02.013
Citation: SHEN Yu-hao, TANG Zheng, PENG Wei. A negatively charged VSiON center for implementation as qubit[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 97-106. doi: 10.3969/j.issn.1000-5641.2017.02.013

可用作量子比特的一种负价态VSiON缺陷中心

doi: 10.3969/j.issn.1000-5641.2017.02.013
基金项目: 国家杰出青年科学基金 (61425004)
详细信息
    作者简介:
  • 中图分类号: O469

A negatively charged VSiON center for implementation as qubit

  • 摘要: γ相Si3N4是一种超硬氮基化合陶瓷材料, 在其尖晶石结构中硅原子分别占据四面体于八面体配位格点.基于第一性原理计算, 研究了这种材料之中一种氧空位复合体VSiON缺陷中心的不同价态下自旋极化的电子结构以及能量稳定性, 其中该缺陷中心由四面体配位的硅空位复合紧邻替位氧原子而成.发现负一价态的该缺陷中心VSiON-1在p型主体材料中是较为稳定的存在, 并满足净自旋S=1的基态三重态, 以及低激发能量的自旋守恒跃迁.通过平均场近似, 将其在绝对零度下的自旋相干寿命估计为0.4 s, 室温下可达毫秒量级.因此理论上表明了VSiON-1缺陷中心是可用作量子比特的相干操控的潜在候选者.
  • Fig.  1  (a) The primitive cell of $\gamma $ -Si $_{3}$ N $_{4 }$ shows the spinel structure characterized with tetrahedrally coordinated and octahedrally coordinated Si atoms; (b) Optimized structure of the V $_{\rm Si}$ O $^{-1}_{\rm N}$ center in the $\gamma $ -Si $_{3}$ N $_{4}$

    Dashed lines denote the dangling bond lengths

    Fig.  2  Calculated formation energies ( $E^{f}$ ) of the V $_{\rm Si}$ O $_{\rm N}$ centers in different charge states under two extreme conditions as a function of Fermi levels ( $\varepsilon_{F}$ ) in the $\gamma $ -Si $_{3}$ N $_{4}$

    Fig.  3  Calculated density of states (DOS) for the V $_{\rm Si}$ O $^{q}_{\rm N}$ centers with different charge states in the $\gamma $ -Si $_{3}$ N $_{4}$ , (a) $q=+1$ , (b) $q=0$ , (c) $q=-1$ , and (d) $q=-2$ . The energies are relative to the calculated chemical potentials ( $E=0$ eV) denoted by thin vertical lines

    Fig.  4  Schematic diagrams of defect energy levels for the V $_{\rm Si}$ O $^{q}_{\rm N}$ centers with different charge states in the $\gamma $ -Si $_{3}$ N $_{4}$ , (a) $q=+1$ and $S=0$ , (b) $q=0$ and $S=1/2$ , (c) $q=-1$ and $S=1$ , (d) $q=-2$ and $S=1/2$

    Fig.  5  Orbital isosurfaces of the defect energy levels $v^{\downarrow}$ (highest occupied molecular Orbital) and $e^{\downarrow}_{x}$ / $e^{\downarrow}_{y}$ (lowest unoccupied molecular orbital) for the V $_{\rm Si}$ O $^{-1}_{\rm N}$ center in the $\gamma $ -Si $_{3}$ N $_{4}$

    Fig.  6  Calculated configuration-coordinate diagram of spin-conserving triplet excitation from $^{3}$ A to $^{3}$ E states in the V $_{\rm Si}$ O $^{-1}_{\rm N}$ centers in $\gamma $ -Si $_{3}$ N $_{4}$

  • [1] BENNETT C H, BESSETTE F, BRASSARD G, et al. Experimental quantum cryptography[J]. Journal of Cryptology, 1992, 5(1):3-28.
    [2] BEVERATOS A, BROURI R, GACOIN T, et al. Single photon quantum cryptography[J]. Physical Review Letters, 2002, 89(18):187901. doi:  10.1103/PhysRevLett.89.187901
    [3] DUTT M V G, CHILDRESS L, JIANG L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond[J]. Science, 2007, 5829(316):1312-1316.
    [4] DEGEN C L. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Applied Physics Letters, 2008, 92(24):243111. doi:  10.1063/1.2943282
    [5] MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 7213(455):644-647. http://cuaweb.mit.edu/Pages/Research/Report/Page.aspx?ReportId=10378
    [6] ZERR A, MIEHE G, SERGHIOU G, et al. Synthesis of cubic silicon nitride[J]. Nature, 1999, 6742(400):340-342.
    [7] ZERR A, SCHWARZ M, SCHMECHEL R, et al. New high-pressure nitrides[J]. Acta Crystallogr. A, 2002, 58:C47. https://www.researchgate.net/publication/244630187_New_high_pressure_nitrides
    [8] WEBER J R, KOEHL W F, VARLEY J B, et al. Quantum computing with defects[J]. Proceedings of the National Academy of Sciences, 2010, 107(19):8513-8518. doi:  10.1073/pnas.1003052107
    [9] WEBER J R, KOEHL W F, VARLEY J B, et al. Defects in SiC for quantum computing[J]. Journal of Applied Physics, 2011, 109(10):102417. doi:  10.1063/1.3578264
    [10] SON N T, CARLSSON P, Ul HASSAN J, et al. Divacancy in 4H-SiC[J]. Physical Review Letters, 2006, 96(5):055501. doi:  10.1103/PhysRevLett.96.055501
    [11] BARANOV P G, BUNDAKOVA A P, SOLTAMOVA A A, et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy[J]. Physical Review B, 2011, 83(12):125203. doi:  10.1103/PhysRevB.83.125203
    [12] KOEHL W F, BUCKLEY B B, HEREMANS F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide[J]. Nature, 2011, 7371(479):84-87. https://www.researchgate.net/publication/51768935_Room_temperature_coherent_control_of_defect_spin_qubits_in_silicon_carbide
    [13] WANG X, ZHAO M, WANG Z, et al. Spin-polarization of VGaON center in GaN and its application in spin qubit[J]. Applied Physics Letters, 2012, 100(19):192401. doi:  10.1063/1.4712595
    [14] TU Y, TANG Z, ZHAO X G, et al. A paramagnetic neutral VAlON center in wurtzite AlN for spin qubit application[J]. Applied Physics Letters, 2013, 103(7):072103. doi:  10.1063/1.4818659
    [15] HANSON R, MENDOZA F M, EPSTEIN R J, et al. Polarization and readout of coupled single spins in diamond[J]. Physical Review Letters, 2006, 97(8):087601. doi:  10.1103/PhysRevLett.97.087601
    [16] JELEZKO F, GAEBEL T, Popa I, et al. Observation of coherent oscillations in a single electron spin[J]. Physical Review Letters, 2004, 92(7):076401. doi:  10.1103/PhysRevLett.92.076401
    [17] Ching W Y, Mo S D, Tanaka I, et al. Prediction of spinel structure and properties of single and double nitrides[J]. Physical Review B, 2001, 63(6):064102. doi:  10.1103/PhysRevB.63.064102
    [18] Wells A F. Structural inorganic chemistry[M]. London:Oxford University Press, 2012.
    [19] Soignard E, Mcmillan P F. Raman spectroscopy of γ-Si3N4 and γ-Ge3N4 nitride spinel phases formed at high pressure and high temperature:Evidence for defect formation in nitride spinels[J]. Chemistry of materials, 2004, 16(18):3533-3542. doi:  10.1021/cm049797+
    [20] OZAKI T. Variationally optimized atomic orbitals for large-scale electronic structures[J]. Physical Review B, 2003, 67(15):155108. doi:  10.1103/PhysRevB.67.155108
    [21] OZAKI T, KINO H. Variationally optimized basis orbitals for biological molecules[J]. The Journal of Chemical Physics, 2004, 121(22):10879-10888. doi:  10.1063/1.1794591
    [22] TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations[J]. Physical Review B, 1991, 43(3):1993. doi:  10.1103/PhysRevB.43.1993
    [23] PERDEW J P, BURKE K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865. doi:  10.1103/PhysRevLett.77.3865
    [24] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188. doi:  10.1103/PhysRevB.13.5188
    [25] OBA F, TATSUMI K, ADACHI H, et al. n-and p-type dopants for cubic silicon nitride[J]. Applied Physics Letters, 2001, 78(11):1577-1579. doi:  10.1063/1.1354667
    [26] FREYSOLDT C, NEUGEBAUER J, Van de Walle C G. Fully ab initio finite-size corrections for charged-defect supercell calculations[J]. Physical Review Letters, 2009, 102(1):016402. doi:  10.1103/PhysRevLett.102.016402
    [27] MATTILA T, ZUNGER A. Deep electronic gap levels induced by isovalent P and As impurities in GaN[J]. Physical Review B, 1998, 58(3):1367. doi:  10.1103/PhysRevB.58.1367
    [28] HOSSAIN F M, DOHERTy M W, Wilson H F, et al. Ab Initio electronic and optical properties of the N-V-center in diamond[J]. Physical Review Letters, 2008, 101(22):226403. doi:  10.1103/PhysRevLett.101.226403
    [29] CHANIER T, OPAHLE I, Sargolzaei M, et al. Magnetic state around cation vacancies in Ⅱ-Ⅵ semiconductors[J]. Physical Review Letters, 2008, 100(2):026405. doi:  10.1103/PhysRevLett.100.026405
    [30] SHINOZUKA Y. Electron-lattice interaction in nonmetallic materials:configuration coordinate diagram and lattice relaxation[J]. Japanese Journal of Applied Physics, 1993, 32(10R):4560. https://www.researchgate.net/publication/243729955_Electron-Lattice_Interaction_in_Nonmetallic_Materials_Configuration_Coordinate_Diagram_and_Lattice_Relaxation
    [31] BALASUBRAMANIAN G, NEUMANN P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature materials, 2009, 8(5):383-387. doi:  10.1038/nmat2420
    [32] MAURER P C, KUCSKO G, LATTA C, et al. Room-temperature quantum bit memory exceeding one second[J]. Science, 2012, 6086(336):1283-1286. http://www.sciencemag.org/content/336/6086/1283.short?related-urls=yes&legid=sci;336/6086/1283
    [33] PAGET D, LAMPEL G, SAPOVAL B, et al. Low field electron-nuclear spin coupling in gallium arsenide under optical pumping conditions[J]. Physical Review B, 1977, 15(12):5780. doi:  10.1103/PhysRevB.15.5780
  • 加载中
图(6)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  46
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回