中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三苯基锡对热带爪蟾胚胎的早期发育毒性

吴粒铰 朱静敏 胡玲玲 施华宏

吴粒铰, 朱静敏, 胡玲玲, 施华宏. 三苯基锡对热带爪蟾胚胎的早期发育毒性[J]. 华东师范大学学报(自然科学版), 2017, (2): 107-115. doi: 10.3969/j.issn.1000-5641.2017.02.014
引用本文: 吴粒铰, 朱静敏, 胡玲玲, 施华宏. 三苯基锡对热带爪蟾胚胎的早期发育毒性[J]. 华东师范大学学报(自然科学版), 2017, (2): 107-115. doi: 10.3969/j.issn.1000-5641.2017.02.014
WU Li-jiao, ZHU Jing-min, HU Ling-ling, SHI Hua-hong. Developmental toxicity of triphenyltin to Xenopus tropicalis embryo[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 107-115. doi: 10.3969/j.issn.1000-5641.2017.02.014
Citation: WU Li-jiao, ZHU Jing-min, HU Ling-ling, SHI Hua-hong. Developmental toxicity of triphenyltin to Xenopus tropicalis embryo[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 107-115. doi: 10.3969/j.issn.1000-5641.2017.02.014

三苯基锡对热带爪蟾胚胎的早期发育毒性

doi: 10.3969/j.issn.1000-5641.2017.02.014
基金项目: 

国家自然科学基金 21277049

详细信息
    作者简介:

    吴粒铰, 女, 硕士研究生, 研究方向为环境毒理学.E-mail:somnus.smile@163.com

    通讯作者:

    施华宏, 男, 教授, 研究方向为环境科学.E-mail:hhshi@des.ecnu.edu.cn

  • 中图分类号: Q89

Developmental toxicity of triphenyltin to Xenopus tropicalis embryo

  • 摘要: 有机锡的外暴露能引起脊椎动物胚胎的独特畸形,但通过母体传递引起的内暴露毒性还缺乏研究.本文通过显微注射的方式研究了三苯基锡(TPT)、过氧化物酶体增殖体激活受体γ(PPARγ)的激动剂罗格列酮(Rosi)和抑制剂T0070907(C12H8ClN3O3)对热带爪蟾胚胎的发育毒性.将3种化合物注入S1-S2期的胚胎后,胚胎的存活率显著下降,其中5 ng TPT,80 ng Rosi和10 ngT0070907,注射组存活率分别为46.9%、42.7%和54.2%.胚胎的体长也受到不同程度的影响5 ng TPT,80 ng Rosi和20 ng T0070907注射组与对照相比体长分别减少了27%、22%和57%.3种化合物还引起了多样的畸形效应,尤其是头部变小及眼睛畸形.说明,PPARγ在热带爪蟾早期胚胎的发育特别是头、眼发育中扮演非常重要的角色.TPT与相近剂量T0070907引起的畸形非常相似,说明TPT的致畸机制可能与PPARγ存在某种关系.另一方面,利用整胚原位杂交检测了注射TPT后S20及S25期胚胎的头、眼部标志基因的空间表达,结果表明bf1en2krox20pax6的表达信号均随TPT剂量增大而逐渐变弱且区域变小,定量PCR进一步验证了TPT能在神经胚及早期尾牙期之前影响胚胎头、眼标志基因的表达.研究结果表明TPT的内暴露对脊椎动物胚胎具有较强的致畸效应和神经毒性.
  • 图  1  TPT、Rosi及T0070907内暴露对热带爪蟾胚胎存活、体长及畸形级数的影响

    注: 各标准差均由3次平行实验结果得出; 暴露组与对照组相比* $P < $ 0.05, ** $P < $ 0.01, *** $P < $ 0.001

    Fig.  1  Effects of TPT, Rosi and T0070907 in ovo exposure on the survival rate, whole body length and malformation degree in Xenopus tropicalis embryos

    图  2  TPT、Rosi及T0070907内暴露对热带爪蟾胚胎的致畸效应

    注: b头, bn脊柱弯曲, bt尾部弯曲, dcg唾液腺下移, e眼, eg唾液腺, eh围心腔水肿, elp泄殖腔膨大, hpo色素减少, mcp小头畸形, p泄殖腔, sp皮肤色素, st躯干拉长, t尾, te晶状体浑浊; 标尺=0.5 mm

    Fig.  2  Teratogenic effects of TPT, Rosi and T0070907 in ovo exposure on Xenopus tropicalis embryos

    图  3  TPT内暴露对热带爪蟾胚胎头部及眼部标志基因表达的影响

    注: 红色箭头所示蓝紫色区域为整胚原位杂交信号; bf1, en2, krox20, pax6分别为热带爪蟾前脑、中脑、后脑、眼睛的标志基因; A-C组胚胎为S20期, 照片为背面观; D组胚胎为S25期, 照片为侧面观

    Fig.  3  Effects of TPT in ovo exposure on brain and eye marker genes expression in Xenopus tropicalis embryos

    图  4  TPT内暴露对热带爪蟾胚胎头部及眼部标志基因表达量的影响

    注: 各标准差均由3次平行实验结果计算得出; 暴露组与对照组相比* $P < $ 0.05, ** $P < $ 0.01, *** $P < $ 0.001

    Fig.  4  Effects of TPT in ovo exposure on brain and eye marker gene expression levels in Xenopus tropicalis embryos

    表  1  热带爪蟾头眼部标志基因定量PCR引物序列表

    Tab.  1  Oligonucleotide primers for real-time RT-PCR analysis of marker genes in Xenopus tropicalis

    $\textbf{Genes}$ Sequence of forward primer (5'-3') Sequence of reverse primer (5'-3') Accession number
    bf1 CACTGGGGAGCAACCATTCT TTAAGGGAGTAGGTGCCCGA NW_004668241.1
    en2 GAGATGAGTCCAACAGGGGG TCCTTCTTTCCTCCTCCCGA NW_004668239.1
    krox20 TACTCGGCTCTCTTCCCTCC AGTTATGGGGGCTGTAAGCG NW_004668240.1
    pax6 TTCCCAGGATCCAGACACCC TGTGCGCCTAGTGATTTCCC NW_004668236.1
    β-actin TGCTGTTTTCCCATCCATTGT CTGTCCCATTCCAACCATGAC NM_213719.1
    下载: 导出CSV
  • [1] YI A X, LEUNG K M Y, LAM M H W, et al. Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment[J]. Chemosphere, 2012, 89(9):1015-1025. doi:  10.1016/j.chemosphere.2012.05.080
    [2] JONES-LEPP T L, VARNER K E, HEGGEM D. Monitoring dibutyltin and triphenyltin in fresh waters and fish in the United States using micro-liquid chromatorgraphy-electrospray/ion trap mass spectrometry[J]. Arch Environ Con Tox, 2004, 46(1):90-95. doi:  10.1007/s00244-003-2286-4
    [3] LARANJEIRO F, SANCHEZ-MARIN P, BARROS A, et al. Triphenyltin induces imposex in Nucella lapillus through an aphallic route[J]. Aquat Toxicol, 2016, 175:127-131. doi:  10.1016/j.aquatox.2016.03.005
    [4] DIMITRIOU P, CASTRITSI J. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, Sparus aurata L, embryos[J]. Ecotox Environ Safe, 2003, 54(1):30-35. doi:  10.1016/S0147-6513(02)00008-8
    [5] SHI H, ZHU P, SUN Z, et al. Divergent teratogenicity of agonists of retinoid X receptors in embryos of zebrafish (Danio rerio)[J]. Ecotoxicology, 2012, 21(5):1465-1475. doi:  10.1007/s10646-012-0900-9
    [6] YU L, ZHANG X, YUAN J, et al. Teratogenic effects of triphenyltin on embryos of amphibian (Xenopus tropicalis):A phenotypic comparison with the retinoid X and retinoic acid receptor ligands[J]. J Hazard Mater, 2011, 192(3):1860-1868. doi:  10.1016/j.jhazmat.2011.07.027
    [7] GUDHMUNDSDOTTIR L O, HO K K Y, LAM J C W, et al. Long-term temporal trends (1992-2008) of imposex status associated with organotin contamination in the dogwhelk Nucella lapillus along the Icelandic coast[J]. Mar Pollut Bull, 2011, 63(5):500-507. http://d.scholar.cnki.net/detail/SJES_U/SJES13011600879557
    [8] HU J, ZHANG Z, WEI Q, et al. Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent[J]. P Natl Acad Sci USA, 2009, 106(23):9339-9344. doi:  10.1073/pnas.0809434106
    [9] NASSEF M, KIM S G, SEKI M, et al. In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes)[J]. Chemosphere, 2010, 79(9):966-973. doi:  10.1016/j.chemosphere.2010.02.002
    [10] COLMAN J R, TWINER M J, HESS P, et al. Teratogenic effects of azaspiracid-1 identified by microinjection of Japanese medaka (Oryzias latipes) embryos[J]. Toxicon, 2005, 45(7):881-890. doi:  10.1016/j.toxicon.2005.02.014
    [11] GRUN F, WATANABE H, ZAMANIAN Z, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates[J]. Mol Endocrinal, 2006, 20(9):2141-2155. doi:  10.1210/me.2005-0367
    [12] HIGLEY E, TOMPSETT A R, GIESY J P, et al. Effects of triphenyltin on growth and development of the wood frog (Lithobates sylvaticus)[J]. Aquat Toxicol, 2013, 144:155-161. https://www.researchgate.net/publication/258214165_Effects_of_triphenyltin_on_growth_and_development_of_the_wood_frog_Lithobates_sylvaticus
    [13] HU L, ZHU J, ROTCHELL J M, et al. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects[J]. Sci Total Environ, 2015, 508:258-265. doi:  10.1016/j.scitotenv.2014.11.086
    [14] YUAN J, ZHANG X L, YU L, et al. Stage-specific malformations and phenotypic changes induced in embryos of amphibian (Xenopus tropicalis) by triphenyltin[J]. Ecotoxicol Environ Saf, 2011, 74(7):1960-1966. doi:  10.1016/j.ecoenv.2011.07.020
    [15] TANIBE M, ISHIURA S I, ASASHIMA M, et al. xCOUP-TF-B regulates xCyp26 transcription and modulates retinoic acid signaling for anterior neural patterning in Xenopus[J]. Int J Dev Biol, 2012, 56(4):239-244. doi:  10.1387/ijdb.113482mt
    [16] XENBASE. 爪蟾联盟数据库[DB/OL]. [2016-03-20]. http:www.xenbase.org.
    [17] GONZALEZ-DONCEL M, FERNANDEZ-TORIJA C, HINTON D E, et al. Stage-specific toxicity of cypermethrin to medaka (Oryzias latipes) eggs and embryos using a refined methodology for an in vitro fertilization bioassay[J].Arch Environ Con Tox, 2004, 48(1):87-98. doi:  10.1007/s00244-003-0223-1
    [18] HANO T, OSHIMA Y, OE T, et al. Quantitative bio-imaging analysis for evaluation of sexual differentiation in germ cells of olvas-GFP/ST-Ⅱ YI Medaka (Oryzias Latipes) nanoinjected in ovo with ethinylestradiol[J]. Environ Toxicol Chem, 2005, 24(1):70-77. doi:  10.1897/03-610.1
    [19] NASSEF M, SANG G K, SEKI M, et al. In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes)[J]. Chemosphere, 2010, 79(9):966-973. doi:  10.1016/j.chemosphere.2010.02.002
    [20] COLMAN J R, TWINER M J, HESS P, et al. Teratogenic effects of azaspiracid-1 identified by microinjection of Japanese medaka (Oryzias latipes) embryos[J]. Toxicon, 2005, 45(7):881-890. doi:  10.1016/j.toxicon.2005.02.014
    [21] ERMAKOVA G V, SOLOVIEVA E A, MARTYNOVA N Y, et al. The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions[J]. Dev Biol, 2007, 307(2):483-497. doi:  10.1016/j.ydbio.2007.03.524
    [22] RODRIGUEZ-SEGUEL E, ALARCON P, GOMEZ-SKARMETA J L. The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx[J]. Dev Biol, 2009, 329(2):258-268. doi:  10.1016/j.ydbio.2009.02.028
    [23] WEI S, XU G, BRIDGES L C, et al. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development[J]. Dev Biol, 2012, 363(1):147-154. doi:  10.1016/j.ydbio.2011.12.031
    [24] DONG W, MACAULAY L J, KWOK K W H, et al. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish:a tool for examining OH-BDE toxicity to early life stages[J]. Aquat Toxicol, 2013, 132:190-199. https://www.researchgate.net/profile/David_Hinton/publication/236083028_Using_whole_mount_in_situ_hybridization_to_examine_thyroid_hormone_deiodinase_expression_in_embryonic_and_larval_zebrafish_A_tool_for_examining_OH-BDE_toxicity_to_early_life_stages/links/565dfac308aefe619b26e2f8.pdf?origin=publication_list
    [25] TERAOKA H, DONG W, OGAWA S, et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo:Altered regional blood flow and impaired lower jaw development[J]. Toxicol Sci, 2002, 65(2):192-199. doi:  10.1093/toxsci/65.2.192
    [26] TONTONOZ P, SPIEGELMAN B M. Fat and beyond:The diverse biology of PPARγ[J]. Annu Rev Biochem, 2008, 77:289-312. doi:  10.1146/annurev.biochem.77.061307.091829
    [27] EVANS R M, BARISH G D, WANG Y X. PPARs and the complex journey to obesity[J]. Nat Med, 2004, 10(4):355-361. doi:  10.1038/nm1025
    [28] KOSTADINOVA R, WAHLI W, MICHALIK L. PPARs in diseases:Control mechanisms of inflammation[J]. Curr Med Chem, 2005, 12(25):2995-3009. doi:  10.2174/092986705774462905
    [29] RICOTE M, GLASS C K. PPARs and molecular mechanisms of transrepression[J]. Biochimica et Biophysica Acta, 2007, 1771(8):926-35. doi:  10.1016/j.bbalip.2007.02.013
    [30] BONFANTI P, COLOMBO A, ORSI F, et al. Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development[J]. Aquat Toxicol, 2004, 70(3):189-200. doi:  10.1016/j.aquatox.2004.09.007
    [31] SAKA M. Developmental toxicity of p, p'-dichlorodiphenyltrichloroethane, 2, 4, 6-trinitrotoluene, their metabolites, and benzo[a] pyrene in Xenopus laevis embryos[J]. Environ Toxicol Chem, 2004, 23(4):1065-1073. doi:  10.1897/03-272
    [32] ZHANG S, GU H, HU N. Role of peroxisome proliferator-activated receptor γ in ocular diseases[J]. J Ophthalmol, 2015, 2015:1-10. https://www.researchgate.net/publication/279216075_Role_of_Peroxisome_Proliferator-Activated_Receptor_in_Ocular_Diseases/fulltext/559f2f5308aeb40ee93c32c5/279216075_Role_of_Peroxisome_Proliferator-Activated_Receptor_in_Ocular_Diseases.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [33] KASTNER P, GRONDONA J M, MARK M, et al. Genetic analysis of RXR alpha developmental function:Convergence of RXR and RAR signaling pathways in heart and eye morphogenesis[J]. Cell, 1994, 78(6):987-1003. doi:  10.1016/0092-8674(94)90274-7
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  70
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回