中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PREM: A parallel package for finding travelling wave solutions to nonlinear evolution equations

Zhi-an ZHANG Yin-ping LIU

张治安, 柳银萍. PREM:并行求解非线性演化方程行波解的软件包[J]. 华东师范大学学报(自然科学版), 2017, (4): 18-33. doi: 10.3969/j.issn.1000-5641.2017.04.002
引用本文: 张治安, 柳银萍. PREM:并行求解非线性演化方程行波解的软件包[J]. 华东师范大学学报(自然科学版), 2017, (4): 18-33. doi: 10.3969/j.issn.1000-5641.2017.04.002
ZHANG Zhi-an, LIU Yin-ping. PREM: A parallel package for finding travelling wave solutions to nonlinear evolution equations[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 18-33. doi: 10.3969/j.issn.1000-5641.2017.04.002
Citation: ZHANG Zhi-an, LIU Yin-ping. PREM: A parallel package for finding travelling wave solutions to nonlinear evolution equations[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 18-33. doi: 10.3969/j.issn.1000-5641.2017.04.002

PREM:并行求解非线性演化方程行波解的软件包

doi: 10.3969/j.issn.1000-5641.2017.04.002
基金项目: 国家自然科学基金(11435005)
详细信息
    作者简介:
  • 中图分类号: TP311.1

PREM: A parallel package for finding travelling wave solutions to nonlinear evolution equations

More Information
    Corresponding author: 柳银萍, 女, 教授, 研究方向为符号计算.E-mail:ypliu@cs.ecnu.edu.cn
  • 摘要: 本文提出了一种新的构造非线性演化方程行波解的并行算法.我们在Maple 18上实现了该算法.通过设计并行算法并使用负载均衡技术,其中的软件PREM的计算效率明显高于已有的串行软件.且基于因式分解算法和运行时间限制,PREM可以自动推导出一些串行程序算不动的复杂方程的部分精确解.相比于已有的其他程序,PREM可自动推导出更多类型的精确行波解.此外,PREM具有灵活的接口和输出.
  • Fig.  1  The parallel structure of the algorithm

    Tab.  1  10 examples to compare the computation efficiency

    id equation
    1 $ {u_t} + u{u_x} + p{u_{xxx}} = 0$
    2 $q{u^3}-qr{u^2}-q{u^2} + pu{u_x} + qru + {u_t}-{u_{xx}} = 0 $
    3 ${u_t}-{u_{xx}}-\frac{{u_x^2}}{u} = u\left( {1-{u^3}} \right) $
    4 $2qu{u_{xx}} + 2qu_x^2 + p{u_{xx}} + r{u_{xxxx}} + {u_{tt}} = 0 $
    5 ${u_t} + {u^2}{u_x} + {u_{xxx}} + {u_{yyx}} + {u_{zzx}} = 0 $
    6 $q{u^3}-q{u^2} + pu{u_x} + qru + {u_t}-{u_{xx}} = 0 $
    7 ${u_t} + {v_x} + u{u_x} + q{u_{xxt}} = 0, {v_t} + v{u_x} + u{v_x} + p{u_{xxx}} = 0 $
    8 ${u_t} + p{v_x} + q{u^2}{u_x} + r{u_{xxx}} = 0, {v_t} + sv{u_x} + u{v_x} + hv{v_x} = 0 $
    9 $\begin{array}{l} {u_t}-\frac{{{u_{xx}}}}{2}-\frac{{{v_{xx}}}}{2}-\left( {5 - p} \right)u{u_x} - \left( {1 + p} \right)v{u_x} - pu{v_x} - \left( {2 - p} \right)v{v_x} = 0\\ {v_t} - \frac{{{u_{xx}}}}{2} - \frac{{{v_{xx}}}}{2} - \left( {2 - p} \right)u{u_x} - pv{u_x} - \left( {1 + p} \right)u{v_x} - \left( {5 - p} \right)v{v_x} = 0 \end{array} $
    10 ${u_t} + {v_x} + u{u_x} + s{u_{xx}} = 0, {v_t} + v{u_x} + u{v_x} + r{v_{xx}} + p{u_{xxx}} = 0 $
    下载: 导出CSV

    Tab.  2  Comparison of the running time for the above 10 examples

    equation
    id
    solutions number
    (parallel)
    solutions number
    (serial)
    time
    (parallel)
    time
    (serial)
    speed-up
    ratio
    1 15 15 2.281 2.452 1.07
    224244.8196.4541.34
    312128.13010.6561.31
    415155.1398.0671.57
    516163.3513.9271.17
    6323214.99924.8561.66
    715156.2338.7791.41
    8141418.99954.2122.85
    925259.1309.9731.10
    10262411.16011.3541.02
    下载: 导出CSV
  • [1] PARKES E J, DUFFY B R. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations [J]. Computer Physics Communications, 1996, 98(3): 288-300. doi:  10.1016/0010-4655(96)00104-X
    [2] EL S A. Modified extended tanh-function method for solving nonlinear partial differential equations [J]. Chaos Solitons & Fractals, 2007, 31(5): 1256-1264. https://www.researchgate.net/publication/223175464_Modified_extended_tanh-function_method_for_solving_nonlinear_partial_differential_equation
    [3] ABDOU M A. The extended tanh method and its applications for solving nonlinear physical models [J]. Applied Mathematics & Computation, 2007, 190(1): 988-996. https://www.researchgate.net/publication/223111350_The_extended_tanh_method_and_its_applications_for_solving_nonlinear_physical_models
    [4] LIU S K, FU Z T, LIU S D, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J]. Physics Letters A, 2001, 289: 69-74. doi:  10.1016/S0375-9601(01)00580-1
    [5] FU Z T, LIU S K, LIU S D, et al. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J]. Physics Letters A, 2001, 290(1/2): 72-76. https://www.researchgate.net/publication/222284149_New_Jacobi_elliptic_function_expansion_and_new_periodic_solutions_of_nonlinear_wave_equations
    [6] YAN Z. The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system [J]. Chaos Solitons & Fractals, 2003, 15(3): 575-583. https://www.researchgate.net/publication/222967414_The_extended_Jacobian_elliptic_function_expansion_method_and_its_application_in_the_generalized_Hirota-Satsuma_coupled_KdV_system
    [7] HE J H, WU X H. Exp-function method for nonlinear wave equations [J]. Chaos Solitons & Fractals, 2006, 30(3): 700-708. https://www.researchgate.net/publication/222259574_Exp-function_method_for_nonlinear_wave_equations
    [8] MA W X, HUANG T, YI Z. A multiple exp-function method for nonlinear differential equations and its appli-cation [J]. Physica Scripta, 2010, 82(6): 5468-5478. http://www.academia.edu/13663807/A_multiple_exp-function_method_for_nonlinear_differential_equations_and_its_application
    [9] LI Z B, LIU Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations [J]. Computer Physics Communications, 2002, 148(2): 256-266. doi:  10.1016/S0010-4655(02)00559-3
    [10] LIU Y P, LI Z B. A Maple package for finding exact solitary wave solutions of coupled nonlinear evolution equations [J]. Computer Physics Communications, 2003, 155(1): 65-76. doi:  10.1016/S0010-4655(03)00347-3
    [11] LIU Y P, LI Z B. An automated Jacobi elliptic function method for finding periodic wave solutions to nonlinear evolution equation [J]. Chinese Physics Letters, 2002, 19(9): 1228-1230. doi:  10.1088/0256-307X/19/9/303
    [12] BALDWIN D, GOKTAS U, HEREMAN W, et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs [J]. Journal of Symbolic Computation, 2004, 37(6): 669-705. doi:  10.1016/j.jsc.2003.09.004
    [13] LI Z B, LIU Y P. RAEEM: A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations [J]. Computer Physics Communications, 2004, 163(3): 191-201. doi:  10.1016/j.cpc.2004.08.007
    [14] ZHANG J X, GU Z M, ZHENG C. Survey of research progress on cloud computing [J]. Application Research of Computers, 2010, 27(2): 429-433.
    [15] BERA S, MISRA S, RODRIGUES J J P C. Cloud computing applications for smart grid: A Survey [J]. IEEE Transactions on Parallel & Distributed Systems, 2015, 26(5): 1477-1494.
    [16] OWENS J D, LUEBKE D, GOVINDARAJU N, et al. A survey of general-purpose computation on graphics hardware [J]. Computer Graphics Forum, 2007, 26(1): 80-113. doi:  10.1111/cgf.2007.26.issue-1
    [17] CANT-PAZ E. A survey of parallel genetic algorithms [J]. Calculateurs Paralleles Reseaux Et Systems Repartis, 1999, 10(4): 429-449.
    [18] UPADHYAYA S R. Parallel approaches to machine learning——A comprehensive survey [J]. Journal of Parallel & Distributed Computing, 2013, 73(3): 284-292. https://www.researchgate.net/publication/257252110_Parallel_approaches_to_machine_learning-A_comprehensive_survey
    [19] AGRAWAL R, SHAFER J C. Parallel mining of association rules [J]. Knowledge & Data Engineering IEEE Transactions on, 1996, 8(6): 962-969. https://www.researchgate.net/publication/3296640_Parallel_Mining_of_Association_Rules
    [20] BERGHEN F V, BERSINI H. CONDOR, a new parallel, constrained extension of Powell's UOBYQA algo-rithm: Experimental results and comparison with the DFO algorithm [J]. Journal of Computational & Applied Mathematics, 2005, 181(1): 157-175. http://www.academia.edu/780086/Parametric_Weighting_of_Parallel_Data_for_Statistical_Machine_Translation
    [21] CHALABINE M, KESSLER C. A Survey of reasoning in parallelization [C]//Proceedings of the Eighth Acis International Conference on Software Engineering. IEEE Computer Society, 2007(3): 629-634.
    [22] WING O, HUANG J W. A computation model of parallel solution of linear equations [J]. IEEE Transactions on Computers, 1980, 29(7): 632-638.
    [23] LI G J, WAH B W. Computational efficiency of parallel combinatorial or-tree searches [J]. IEEE Transactions on Software Engineering, 1990, 16(1): 13-31. doi:  10.1109/32.44360
    [24] HOFFMANN K H, ZOU J. Parallel solution of variational inequality problems with nonlinear source terms [J]. Ima Journal of Numerical Analysis, 1996, 16(1): 31-45. doi:  10.1093/imanum/16.1.31
    [25] GALIL Z, PAN V. Parallel evaluation of the determinant and of the inverse of a matrix [J]. Information Processing Letters, 1989, 30(1): 41-45. doi:  10.1016/0020-0190(89)90173-7
    [26] WANGWQ. A parallel alternating difference implicit scheme for a dispersive equation[J].Mathematica Numerica Sinica, 2005, 27(2): 129-140. doi:  10.1504/IJCSM.2014.066429
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  59
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-28
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回