中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一原理计算拟合Ag、Si和C原子间作用势的研究

王永伟 郭永亮 张伟 柯学志

王永伟, 郭永亮, 张伟, 柯学志. 基于第一原理计算拟合Ag、Si和C原子间作用势的研究[J]. 华东师范大学学报(自然科学版), 2017, (4): 114-125. doi: 10.3969/j.issn.1000-5641.2017.04.010
引用本文: 王永伟, 郭永亮, 张伟, 柯学志. 基于第一原理计算拟合Ag、Si和C原子间作用势的研究[J]. 华东师范大学学报(自然科学版), 2017, (4): 114-125. doi: 10.3969/j.issn.1000-5641.2017.04.010
WANG Yong-wei, GUO Yong-liang, ZHANG Wei, KE Xue-zhi. Interatomic potential fitting study of Ag, Si and C based on first-principle calculations[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 114-125. doi: 10.3969/j.issn.1000-5641.2017.04.010
Citation: WANG Yong-wei, GUO Yong-liang, ZHANG Wei, KE Xue-zhi. Interatomic potential fitting study of Ag, Si and C based on first-principle calculations[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 114-125. doi: 10.3969/j.issn.1000-5641.2017.04.010

基于第一原理计算拟合Ag、Si和C原子间作用势的研究

doi: 10.3969/j.issn.1000-5641.2017.04.010
详细信息
    作者简介:

    王永伟, 男, 硕士研究生, 研究方向为统计和凝聚态理论.E-mail:wangyongwe13@163.com

    通讯作者:

    郭永亮, 男, 博士研究生, 研究方向为统计和凝聚态理论.E-mail:ylguo@stu.ecnu.edu.cn

    柯学志, 男, 教授, 博士生导师, 研究方向为统计和凝聚态理论.E-mail:xzke@phy.ecnu.edu.cn

  • 中图分类号: O411.2;O483;O414.2

Interatomic potential fitting study of Ag, Si and C based on first-principle calculations

  • 摘要: 为了实现Ag在SiC晶体中扩散的分子动力学模拟,根据第一性原理计算结果,采用“力匹配”方法对Ag、Si和C原子间相互作用势进行拟合,并用晶格常数、内聚能、体弹性模量、弹性常数和缺陷形成能等进行了势函数的验证.结果表明,拟合所得的势对Si、C和SiC晶体的内聚能、晶格常数和体弹性模量的计算非常准确,最大误差不超过0.6%;并且,该势对Si和C晶体中空位与间隙形成能及SiC晶体中Si与C空位形成能的计算值比采用J.Tersoff给出的势的计算值更精确;此外,该势对16种AgSiC三原子体系缺陷形成能的计算也比较精确.
  • 图  1  TRISO包覆颗粒燃料结构示意图

    Fig.  1  The structure of Tristructural-Isotropic-coated fuel particle

    图  2  5种AgSiC三原子体系缺陷示意图

    Fig.  2  Five kinds of AgSiC three-atom system defects

    图  3  Si(C)晶体中空位和间隙示意图

    Fig.  3  Vacancy and interstitial of Si(C)crystal

    图  4  SiC晶体中Si和C空位示意图

    Fig.  4  Si and C vacancy of SiC crystal

    图  5  Si、C和SiC晶体在不同体积下内聚能的计算值及用Murnaghan方程拟合的结果

    Fig.  5  The calculated values of cohesive energies at different volumes in Si, C and SiC crystals and the Murnaghan equation fitting results of these values

    表  1  Si、C和SiC晶体中各物理量的计算值

    Tab.  1  The calculated values of various physical quantities in Si, C and SiC crystals

    (a) Si
    $a$ /ÅE/(eV $\cdot$ atom $^{-1}$ ) $B$ /Mbar $C_{11}$ /Mbar $C_{12}$ /Mbar $C_{44}$ /MbarVac/ÅInt/Å
    exp[34-36]5.429-4.630.991.70.60.8
    Tersoff[21]5.432 1-4.6290.981.30.90.43.73.6
    This work5.471 9-4.5450.941.40.70.73.63.4
    DFT5.468 8-4.5450.891.50.60.73.73.8
    Refa[22]1.50.80.73.73.8
    Refb[37-39]5.451-4.670.98
    (b) C
    $a$ /ÅE/(eV $\cdot$ atom $^{-1}$ ) $B$ /Mbar $C_{11}$ /Mbar $C_{12}$ /Mbar $C_{44}$ /MbarVac/ÅInt/Å
    exp [36,40-41]3.567-7.374.4210.81.35.8
    Tersoff[21]3.566 8-7.3684.2510.71.06.43.318.2
    This work3.573 7-7.7734.3711.21.06.73.620.4
    DFT3.574 2-7.7734.3310.41.25.67.121.3
    Refa[20]10.91.26.4
    Refb[42]3.560-7.844.377.223.6
    (c) SiC
    $a$ /ÅE/(eV $\cdot$ atom $^{-1}$ ) $B$ /Mbar $C_{11}$ /Mbar $C_{12}$ /Mbar $C_{44}$ /MbarVsi/eVVc/eV
    exp[43]4.36-6.342.23.901.422.56
    Tersoff[21]4.321-6.1642.244.251.092.523.13.9
    This work4.374-6.4322.113.511.422.987.54.2
    DFT4.379-6.4312.123.961.412.967.54.1
    Refa[21]4.322.24.21.22.6
    Refb[15]7.44.4
    下载: 导出CSV

    表  2  Ag、Si和C的化学势

    Tab.  2  Chemical potentials for Ag、Si and C

    Case μSi/eV μC/eVμAg/eV γSi/eVγC/eV
    Si rich-5.44-9.650-0.44
    Ref. [15]C rich-5.89-9.20-0.440
    γSi=γC-5.76-9.43-0.22-0.22
    Si rich-4.545-8.046-2.6620-0.545 2
    This workC rich-5.090-7.773-2.662-0.545 20
    γSi=γC-4.818-8.046-2.662-0.272 6-0.272 6
    下载: 导出CSV

    表  3  16种缺陷体系缺陷形成能的计算值

    Tab.  3  The calculated formation energies of 16 kinds of defect systems

    Defect缺陷形成能/(eV $\cdot$ atom-1)
    $\gamma _\mathrm {Si}=\gamma _\mathrm {C}$ Si richC rich
    Ref. [15]DFTThis workRef. [15]DFTThis workRef. [15]DFTThis workerror
    Ag $_\mathrm{C}$ 7.657.737.397.897.977.837.357.420.07
    Ag $_\mathrm{C}V_\mathrm{Si}$ 5.316.075.286.045.286.040.76
    Ag $_\mathrm{C}2V_\mathrm{Si}$ 11.1410.2911.4010.8410.0010.9611.3810.540.84
    Ag $_\mathrm{C}V_\mathrm{Si}V_\mathrm{C}$ 8.306.188.546.428.005.872.12
    Ag $_\mathrm{C}V_\mathrm{Si}$ C $_\mathrm{Si}$ 8.008.087.427.498.518.590.08
    Ag $_\mathrm{C}V_\mathrm{Si}$ Si $_\mathrm{C}$ 7.545.238.065.746.974.652.31
    Ag $_\mathrm{C}V_\mathrm{C}$ 8.1412.988.6613.497.5612.44.83
    Ag $T_\mathrm{C}$ 11.1811.0010.4911.1510.9610.4911.1510.960.18
    Ag $_\mathrm{Si}$ 6.356.496.606.056.186.166.596.730.14
    Ag $_\mathrm{Si}V_\mathrm{C}$ 5.316.075.325.276.045.325.286.040.76
    Ag $_\mathrm{Si}2V_\mathrm{C}$ 6.817.006.447.057.246.886.516.690.19
    Ag $_\mathrm{Si}V_\mathrm{C}V_\mathrm{Si}$ 10.7211.0910.9710.410.7910.5210.9611.340.37
    Ag $_\mathrm{Si}V_\mathrm{C}$ Si $_\mathrm{C}$ 7.545.237.058.065.747.936.974.652.31
    Ag $_\mathrm{Si}V_\mathrm{C}$ C $_\mathrm{Si}$ 8.008.088.567.427.507.678.518.590.08
    Ag $_\mathrm{Si}V_\mathrm{Si}$ 7.927.4613.537.346.8812.658.437.970.46
    Ag $T_\mathrm{Si}$ 12.0912.6111.3812.0612.5711.3812.0612.570.52
    下载: 导出CSV

    表  4  Si、C和Ag原子间相互作用势参数表

    Tab.  4  Interatomic potential parameters of Si, C and Ag

    A/eVB/eVλ-1μ-1βnc dhSR
    Si-Si1 830.8471.692.467 21.726 11.1×10-60.787 34100 39016.217-0.598 253.02.7
    C-C1 393.6351.933.448 92.183 21.6×10-70.727 5138 0494.348 4-0.570 582.11.8
    Si-C1 413.38388.7062.806 91.918 01.393×10-53.363 3568 706.312.952 7-0.594 852.512.21
    Si-Ag521.2599 913.5650.696 93.097 711.01.064 851.3654.53-0.374 603.653.00
    C-Ag99 173.9599 480.554.330 41.068 31.01.022.640.089-0.292 483.02.0
    Ag-Ag003.808 11.082 11.01.0309.624.347 1-0.885 723.12.7
    下载: 导出CSV
  • [1] RUBIN S D. TRISO-coated particle fuel phenomenon identification and ranking tables (PIRTs) for fission product transport due to manufacturing, operations and accidents[R]. USA: US-NRC, 2004.
    [2] VERFONDERN K. Fuel performance and fission product behavior in gas-cooled reactors No. TECDOC-978[R]. Vienna: IAEA, 1997.
    [3] MINATO K, SAWA K, KOYA T, et al. Fission product release behavior of individual coated fuel particles for high-temperature gas-cooled reactors[J]. Nucl Technol, 2000, 131: 36-47. https://www.researchgate.net/publication/241947111_Fission_Product_Release_Behavior_of_Individual_Coated_Fuel_Particles_for_High-Temperature_Gas-Cooled_Reactors
    [4] SCHENK W, POTT G, NABIELEK H. Fuel accident performance testing for small HTRs[J]. J Nucl Mater, 1990, 175: 19-30. http://linkinghub.elsevier.com/retrieve/pii/002231159090342K
    [5] MINATO K, OGAWA T, FUKUDA K, et al. Release behavior of metallic fission products from HTGR fuel particles at 1 600 to 1 900 ℃[J]. J Nucl Mater, 1993, 202: 47-53. doi:  10.1016/0022-3115(93)90027-V
    [6] FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide[J]. J Nucl Mater, 2009, 389: 326-331. doi:  10.1016/j.jnucmat.2009.02.022
    [7] MACLEAN H, BALLINGER R, KOLAYA L, et al. The effect of annealing at 1500 ℃ on migration and release of ion implanted silver in CVD silicon carbide[J]. J Nucl Mater, 2006, 357: 31-47. doi:  10.1016/j.jnucmat.2006.05.043
    [8] BULLOCK R E. Fission-product release during postirradiation annealing of several types of coated fuel particles[J]. J Nucl Mater, 1984, 125: 304-319. doi:  10.1016/0022-3115(84)90558-0
    [9] PETTI D, BUONGIORNO J, MAKI J, et al. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance[J]. Nucl Eng Des, 2003, 222: 281-297. doi:  10.1016/S0029-5493(03)00033-5
    [10] NABIELEK H, BROWN P E, OFFERMAN P. Silver release from coated particle fuel[J]. Nucl Technol, 1977, 35: 483-493. doi:  10.13182/NT35-483
    [11] VERFONDERN K, MARTIN R C, MOORMANNN R. Methods and data for HTGR fuel performance and radionuclide release modeling during normal operation and accidents for safety analyses No. JUEL-2721[R]. Germany: Forschungszentrum Jülich GmbH, 1993.
    [12] AMIAN W, STOVER D. Diffusion of silver and cesium in silicon-carbide coatings of fuel particles for hightemperature gas-cooled reactors[J]. Nucl Technol, 1983, 61: 475-486. doi:  10.13182/NT61-475
    [13] FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide [J]. J Nucl Mater, 2009, 389: 326-331. doi:  10.1016/j.jnucmat.2009.02.022
    [14] MACLEAN H J. Silver transport in CVD silicon carbide [D]. Boston: MIT, 2004.
    [15] SHRADER D, KHALIL S, GERCZAK T, et al. Ag diffusion in cubic silicon carbide[J]. J Nucl Mater, 2010, 408: 257-271. http://www.sciencedirect.com/science/article/pii/S0022311511010063
    [16] KHALIL S, SWAMINATHAN N, SHRADER D, et al. Diffusion of Ag along 3 grain boundaries in 3C-SiC[J]. Phys Rev B, 2011, 84: 214104. doi:  10.1103/PhysRevB.84.214104
    [17] VOTER A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events[J]. Phys Rev Lett, 1997, 78: 3908-3911. doi:  10.1103/PhysRevLett.78.3908
    [18] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B, 1988, 37: 6991-7000. doi:  10.1103/PhysRevB.37.6991
    [19] TERSOFF J. New empirical model for the structural properties of silicon[J]. Phys Rev Lett, 1986, 56: 632-635. doi:  10.1103/PhysRevLett.56.632
    [20] TERSOFF J. Empirical interatomic potential for carbon, with applications to amorphous carbon[J]. Phys Rev Lett, 1988, 61: 2879-2882. doi:  10.1103/PhysRevLett.61.2879
    [21] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Phys Rev B, 1989, 39: 5566-5568. doi:  10.1103/PhysRevB.39.5566
    [22] TERSOFF J. Empirical interatomic potential for silicon with improved elastic properties[J]. Phys Rev B, 1988, 38: 9902-9905. doi:  10.1103/PhysRevB.38.9902
    [23] FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys Rev B, 1986, 33: 7983-7991. doi:  10.1103/PhysRevB.33.7983
    [24] LI X P, CEPERLEY D M, MARTIN R M. Cohesive energy of silicon by the Green's-function monte carlo method[J]. Phys Rev B, 1991, 44: 10929-10932. doi:  10.1103/PhysRevB.44.10929
    [25] KOHAN A F, CEDER G, MORGAN D, et al. First-principles study of native point defects in ZnO[J]. Phys Rev B, 2000, 61: 15019-15027. doi:  10.1103/PhysRevB.61.15019
    [26] MURNAGHAN F D. The compressibility of media under extreme pressures[J]. Proceeding of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247. doi:  10.1073/pnas.30.9.244
    [27] BUTLER K T, VULLUM P E, MUGGERUD A M, et al. Structural and electronic properties of silver/silicon interfaces and implications for solar cell performance [J]. Phys Rev B, 2011, 83(23): 2155-2161. https://www.researchgate.net/profile/Keith_Butler/publication/235446230_Structural_and_electronic_properties_of_silversilicon_interfaces_and_implications_for_solar_cell_performance/links/559361f608ae5af2b0eb7aa9.pdf?disableCoverPage=true
    [28] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186. doi:  10.1103/PhysRevB.54.11169
    [29] BROMMER P, GÄHLER F. Potfit: Effective potentials from ab -initio data [J]. Simul Mater Sci Eng, 2007, 15: 295-304. doi:  10.1088/0965-0393/15/3/008
    [30] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868. doi:  10.1103/PhysRevLett.77.3865
    [31] MARTIN R M. Electronic Structure: Basic Theory and Practical Methods[M]. Cambridge: Cambridge University Press, 2004.
    [32] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13: 5188-5200. doi:  10.1103/PhysRevB.13.5188
    [33] ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Phys Rev B, 2005, 71(3): 035211. doi:  10.1103/PhysRevB.71.035211
    [34] MOORE C E. Atomic Energy Levels Volumer[M]. Washington D C: NBS, 1949.
    [35] AADERSON O L. The use of ultrasonic measurements under modest pressure to estimate compression at high pressure[J]. J Phys Chem Solids, 1966, 27: 547-565. doi:  10.1016/0022-3697(66)90199-5
    [36] DONOHUE J. The structures of the elements[J]. Diamond and Related Materials, 1974, 24(4): 436. DOI:  10.1016/j.diamond.2011.01.035.
    [37] YIN M T, COHEN M L. Microscopic theory of the phase transformation and lattice dynamics of Si [J]. Phys Rev Lett, 1980, 45: 1004-1007. doi:  10.1103/PhysRevLett.45.1004
    [38] CAR R, KELLY P J, OSHIYAMA A, et al. Microscopic theory of atomic diffusion mechanisms in silicon [J]. Phys Rev Lett, 1984, 52: 1814-1817. doi:  10.1103/PhysRevLett.52.1814
    [39] BARAFF G A, SCHLUTER M. Migration of interstitials in silicon [J]. Phys Rev B, 1984, 30: 3460-3469. doi:  10.1103/PhysRevB.30.3460
    [40] BREWER L. Lawrence berkeley laboratory report No. LB-3720[R]. California: Lawrence Berkeley Laboratory, 1977.
    [41] MCSKIMIN H J, ANDREATCH P. The elastic stiffness moduli of diamond[J]. J Appl Phys, 1972, 43: 985-987. doi:  10.1063/1.1661318
    [42] BERNHOLC J, ANTONELLI A, DELSOLE T M, et al. Mechanism of self-diffusion in diamond[J]. Phys Rev Lett, 1988, 61: 2689-2692. doi:  10.1103/PhysRevLett.61.2689
    [43] LEE D H, JOANNOPOULOS J D. Simple scheme for deriving atomic force constants: Application to SiC[J]. Phys Rev Lett, 1982, 48: 1846-1849. doi:  10.1103/PhysRevLett.48.1846
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  119
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回