中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)

Shi-mei CHEN Dan-ni Li Qing-qing Ding Na YU

陈仕梅, 李丹妮, 丁晴晴, 禹娜. Cd2+对 Cypridopsis vidua(介形纲)肠壁结构的毒性效应[J]. 华东师范大学学报(自然科学版), 2017, (4): 168-179. doi: 10.3969/j.issn.1000-5641.2017.04.015
引用本文: 陈仕梅, 李丹妮, 丁晴晴, 禹娜. Cd2+Cypridopsis vidua(介形纲)肠壁结构的毒性效应[J]. 华东师范大学学报(自然科学版), 2017, (4): 168-179. doi: 10.3969/j.issn.1000-5641.2017.04.015
CHEN Shi-mei, Li Dan-ni, Ding Qing-qing, YU Na. Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 168-179. doi: 10.3969/j.issn.1000-5641.2017.04.015
Citation: CHEN Shi-mei, Li Dan-ni, Ding Qing-qing, YU Na. Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 168-179. doi: 10.3969/j.issn.1000-5641.2017.04.015

Cd2+Cypridopsis vidua(介形纲)肠壁结构的毒性效应

doi: 10.3969/j.issn.1000-5641.2017.04.015
基金项目: 公益性行业(农业)科研专项项目(201203065-04);国家自然科学基金(31672263,41372365)
详细信息
    作者简介:
  • 中图分类号: X592

Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)

More Information
    Corresponding author: 禹娜, 女, 教授, 博士生导师, 研究方向为水生动物生态学.E-mail:nyu@bio.ecnu.edu.cn
  • 摘要: Cypridopsis vidua是少数能在重污染水体中生存的介形类之一.本文采用急性毒性实验方法,研究了Cd2+对介形类 C.vidua及其肠壁结构的影响,结果表明,24、48、72和96h时Cd2+C.vidua的半致死浓度( LC50)分别为5.00、2.01、0.46和0.14 mg/L,安全浓度为0.014 mg/L.在急性毒性试验的基础上,于安全浓度上下分别设置了两个Cd2+实验浓度对介形类进行攻毒研究,目的是进一步探讨在安全浓度附近,Cd2+C.vidua肠壁细胞的损伤情况,实验持续7 d.显微结果显示,在安全浓度以下时, C.vidua的胃肠道结构基本没有受到损伤,但超过安全浓度后, C.vidua的胃肠道结构损伤程度于96h以内表现出了一定的时间和剂量效应,但至第7天时部分幸存下来的 C.vidua其受损胃肠道结构出现一定程度的恢复,但已无法恢复到最初的状态了;亚显微切片显示,肠壁细胞的膜结构、胞质、胞器等均有不同程度的损伤,且随镉离子浓度的升高损伤明显加剧,其中细胞的膜结构损伤尤为严重.
  • Fig.  1  The relationship between $LC_{50}$ values and exposure time

    Fig.  2  Electron micrographs of intestinal cells from C. vidua exposed to no Cd2+ (control) or high Cd2+ (0.064 mg/L)

    Note: Samples were isolated at the indicated time points and processed for TEM as described in the experimental section. (A) control; (B) 0.064 mg/L for 24 h; (C) for48 h; (D) for 72 h; (E-F) for 96 h; (G-H) for 7 d. Pa paticle; er endoplasmic reticulum; mi mitochondria; nu nuclear; li liquid droplet; mv microvillus; lu lumen; es plasmodesmus

    Fig.  3  Electron micrographs of intestinal cells from C. vidua exposed to no Cd2+ (control) or low Cd2+ (0.004 mg/L)

    Note: Samples were isolated at the indicated time points and processed for TEM as described in the experimental section. (A) control; (B) 0.004 mg/L for 24 h; (C) for48 h; (D) for 72 h; (E-F) for 96 h; (G-H) for 7 d. paticle; er endoplasmic reticulum; mi mitochondria; nu nuclear; li liquid droplet; mv microvillus; lu lumen; es plasmodesmus

    Tab.  1  Cypridopsis vidua tolerance to water-borne Cd2+

    FactorExposure time/hRegression equationCorrelation coefficient ( $R^2$ ) LC50/( ${\rm{mg}} \cdot {{\rm{L}}^{ - 1}}$ )Safe concentration /( ${\rm{mg}} \cdot {{\rm{L}}^{ - 1}}$ )
    Cd2+24 y=1.8476 x+1.68780.84115.000.014
    48 y=1.9548 x+4.0440.82572.01
    72 y=2.8497 x+6.34330.81010.46
    96 y=2.2946 x+10.2550.67730.14
    Note: x logarithmic concentration of environmental factors; y probit mortality for C. vidua
    下载: 导出CSV
  • [1] STANKOVIC S, JOVIC M, STANKOVIC A R, et al. Heavy metals in seafood mussels. Risks for human health. [M]//LICHTFOUSE E, SCHWARZBAUER J, ROBERT D, Environmental chemistry for a sustainable world: Volume 1-Nanotechnology and Health Risk. Netherlands: Springer, 2012: 311-373.
    [2] YANG J, LEWANDROWSKI K B. Trace elements, vitamins, and nutrition [M]//MCCLATCHEY K D. Clinical Laboratory Medicine. 2nd ed. Philadelphia: Lippincott Williams and Wilkins, 2002: 439-462.
    [3] GO Y M, ROEDE J R, ORR M, et al. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of Cd Toxicity [J]. Toxicological Sciences, 2014, 139(1): 59-73. doi:  10.1093/toxsci/kfu018
    [4] ZHOU Q, KONG F, ZHU L. Ecotoxicology [M]. Beijing: Science Press, 2004: 56-58.
    [5] OMER S A, ELOBEID M A, FOUAD D, et al. Cadmium bioaccumulation and toxicity in tilapia fish (Oreochromis niloticus) [J]. Journal of Animal and Veterinary Advances, 2012, 11(10): 1601-1606. doi:  10.3923/javaa.2012.1601.1606
    [6] IARC (International Agency for Research on Cancer). Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry [J]. IARC monographs on the evaluation of carcinogenic risks to humans, 1993, 58: 41-117. http://www.worldcat.org/title/beryllium-cadmium-mercury-and-exposures-in-the-glass-manufacturing-industry/oclc/31012683
    [7] LIU G, SHENG Z, WANG Y, et al. Glutathione peroxidase 1 expression, malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride [J]. Gene, 2016, 578(2): 210-218. doi:  10.1016/j.gene.2015.12.034
    [8] DEFUR P L. Use and role of invertebrate models in endocrine disruptor research and testing [J]. National Research Council, Institute of Laboratory Animal Resources, 2004, 45(4): 484-493. doi:  10.1093/ilar.45.4.484
    [9] MIRTO S, DANOVARO R. Meiofaunal colonisation on artificial substrates: A tool for biomonitoring the environmental quality on coastal marine systems [J]. Marine Pollution Bulletin, 2004, 48(9-10): 919-926. doi:  10.1016/j.marpolbul.2003.11.016
    [10] SUTHERLAND T F, LEVINGS C D, PETERSEN S A, et al. The use of meiofauna as an indicator of benthic organic enrichment associated with salmonid aquaculture [J]. Marine Pollution Bulletin, 2007, 54(8): 1249-1261. doi:  10.1016/j.marpolbul.2007.03.024
    [11] ZHANG Q, HU G. Applications of meiobenthos in marine ecological monitoring [J]. Marine Information, 2008, 4: 28-29.
    [12] RUIZ F, GONZÁLEZ-REGALADO M L, BORREGO J, et al. Ostracoda and Foraminifera as short–term tracers of environmental changes in very polluted areas: The Odiel Estuary (SWSpain) [J]. Environment Pollution, 2004, 129(1): 49-61. doi:  10.1016/j.envpol.2003.09.024
    [13] YU N, CHEN S, LI E, et al. Tolerance of Physocypria kraepelini (Crustacean, Ostracoda) to water–borne ammonia, phosphate and pH value [J]. Journal of Environmet Science, 2009, 21: 1575-1580. doi:  10.1016/S1001-0742(08)62458-4
    [14] YU N, CHEN L, ZHAO Q. CCA of ostracod distribution and environmental factors in the Taihu Lake [J]. Acta Micropalaeontologica Sinica, 2007, 24: 53-56. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT200701004.htm
    [15] RUIZ F, ABAD M, BODERGAT A M, et al. Freshwater ostracods as environmental tracers [J]. International Journal of Environmental Science and Technology, 2013(10): 1115-1128. https://www.researchgate.net/profile/Antonio_Toscano/publication/236009913_Freshwater_ostracods_as_environmental_tracers/links/00b49515c173ff1c08000000.pdf
    [16] KÜLKÖYLÜOĞLU O, SARI N, DÜGEL M, et al. Effects of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake Çubuk, Turkey) [J]. Limnologica-Ecology and Management of Inland Waters, 2014, 46: 99-108. doi:  10.1016/j.limno.2014.01.001
    [17] WEI C, YU N, ZHAO Q, et al. Canonical correspondence analysis of modern Ostracoda and environmental factors in the Dishui Lake, Shanghai [J]. Acta Micropalaeontological Sinica, 2015, 32(2): 115-124. https://www.researchgate.net/publication/281020669_Evaluation_of_water_quality_and_the_type_of_nourishment_in_the_eastern_zone_of_Lake_Chaohu_by_means_of_zooplankton
    [18] KÜLKÖYLÜOĞLU O. Ecology of freshwater Ostracoda (Crustacea) from lakes and reservoirs in Bolu, Turkey[J]. Journal of Freshwater Eecology, 2003, 18(3): 343-347. doi:  10.1080/02705060.2003.9663968
    [19] PIERI V, VANDEKERKHOVE J, GOI D. Ostracoda (Crustacea) as indicators for surface water quality: A case study from the Ledra River Basin (NE Italy) [J]. Hydrobiologia, 2012, 688: 25-35. doi:  10.1007/s10750-010-0568-1
    [20] KÜLKÖYLÜOĞLU O, SARI N. Ecological characteristics of the freshwater Ostracoda in Bolu Region (Turkey)[J]. Hydrobiologia, 2012, 688: 37-46. doi:  10.1007/s10750-010-0585-0
    [21] LORENSCHAT J, PÉREZ L, CORREA-METRIO A, et al. Diversity and spatial distribution of extant freshwater ostracodes (Crustacea) in ancient Lake Ohrid (Macedonia /Albania) [J]. Diversity, 2014, 6(3): 524-550. doi:  10.3390/d6030524
    [22] SCHNEIDER A, WETTERICH S, SCHIRRMEISTER L, et al. Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia [J]. Polar Research, 2016, 35. DOI:  10.3402/polar.v35.25225.
    [23] KHANGAROT BS, RAY PK. Sensitivity of midge larvae of Chironomus tentans Fabricius (Diptera: Chironomidae) to heavy metals [J]. Bulletin of Environment Contamination and Toxicololgy, 1989, 42(3): 325-330. doi:  10.1007/BF01699956
    [24] BERGIN F, KUCUKSEZGIN F, ULUTURHAN E, et al. The response of benthic Foraminifera and Ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea) [J]. Estuarine, Coastal and Shelf Science, 2006, 66(3-4): 368-386. doi:  10.1016/j.ecss.2005.09.013
    [25] RATHORE RS. Studies on the use of some freshwater invertebrates as sensitive test models for the assessment of toxicity of environmental pollutants [D]. Lucknow: University of Lucknow, 2001: 1-196.
    [26] BELGIS Z C, PERSOONE G, BLAISE C. Cyst–based toxicity tests X V I-sensitivity comparision of the solid phase Heterocypris incongruens microbiotest with the Hyalella azteca and Chironomus riparius contact assays on freshwater sediments from Peninsula Harbour (Ontario, Canada) [J]. Chemosphere, 2003, 52(1): 95-101. doi:  10.1016/S0045-6535(03)00186-3
    [27] SÁNCHEZ-BAYO F. From simple toxicological models to prediction of toxic effects in time [J]. Ecotoxicology, 2009, 18: 343-354. doi:  10.1007/s10646-008-0290-1
    [28] BAK M, SZLAUER-LUKASZEWSKA A. Bioindicative potential of diatoms and ostracods in the Odra mouth environment quality assessment [J]. Nova Hedwigia, Beiheft, 2012, 141(3): 463-484. https://www.researchgate.net/profile/Agnieszka_Szlauer-Lukaszewska/publication/259800890_Bioindicative_potential_of_diatoms_and_ostracods_in_the_Odra_mouth_environment_quality_assessment/links/54e45eac0cf2dbf60695ede1.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [29] KHANGAROT BS, RAY PK. Response of a freshwater ostracod (Cypris subglobosa Sowerby) exposed to Copper at different pH levels [J]. Acta Hydrochimica et Hydrobiologica, 1987, 15(6): 553-558. doi:  10.1002/(ISSN)1521-401X
    [30] CHEN S, YU N, ZHOU Y, et al. Acute toxicity experiment of Cd2+, Zn2+ and Cu2+ in Physocypria kraepelini (Ostracoda) [J]. Acta Micropalaeontologica Sinica, 2010, 27(2): 118-124.
    [31] DU N. Crustacean [M]. Beijing: Science and Technology Press, 1993: 137-158.
    [32] LIM R P, WONG M C. The effects of pesticides on the population dynamics and production of Stenocypris major Baird (Ostracoda) in ricefields [J]. Archiv für Hydrobiologie, 1986, 106: 421-427. https://www.researchgate.net/publication/279625689_The_effect_of_pesticides_on_the_population_dynamics_and_production_of_Stenocypris_major_Baird_Ostracoda_in_rice_fields
    [33] KISS A. Limnological investigations of small water bodies in the Pilis Biosphere Reserve, Hungary. Part Ⅱ. Köegyi-tó and Unkás-tócsa [J]. Opuscula Zoologica (Budapest), 2001, 33: 67-74.
    [34] SHORNIKOV E I, TREBUKHOVA Y A. Ostracods of brackish and fresh waters of southwestern coast of Peter the Great Bay [M]//KASYANOV V L, VASCHENKO M A, PITRUK D L, The state of environment and biota of the southwestern part of Peter the Great Bay and the Tumen River mouth. Vladivostok: Dalnauka, 2001: 56-84.
    [35] KÜLKÖYLÜOĞLU O. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey [J]. Ecological Indicators, 2004, 4(2): 139-147. doi:  10.1016/j.ecolind.2004.01.004
    [36] KÜLKÖYLÜOĞLU O. Ecology and phenology of freshwater ostracods in Lake Gölköy (Bolu, Turkey) [J]. Aquatic Ecology, 2005, 39(3): 295-304. doi:  10.1007/s10452-005-0782-5
    [37] KÜLKÖYLÜOĞLU O, DÜGEL M, KILIÇ M. Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey) [J]. Hydrobiologia, 2007, 585(1): 119-133. doi:  10.1007/s10750-007-0633-6
    [38] ROCA J R, BALTANAS A, UIBLEIN F. Adaptive responses in Cypridopsis vidua (Crustacea: Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis) [J]. Hydrobiologia, 1993, 262(2): 127-131. doi:  10.1007/BF00007513
    [39] CYWINSKA A, CRUMP D, LEAN D. Influence of UV radiation on four freshwater invertebrates [J]. Photochemistry and Photobiology, 2000, 72(5): 652-659. doi:  10.1562/0031-8655(2000)072<0652:IOUROF>2.0.CO;2
    [40] CYWINSKA A, HEBERT P D N. Origins of clonal diversity in the hypervariable asexual ostracode Cypridopsis vidua [J]. Journal of Evolutionary Biology, 2002, 15(1): 134-145. doi:  10.1046/j.1420-9101.2002.00362.x
    [41] HUNT G, PARK L E, LABARBERA M. A novel crustacean swimming stroke: coordinated four–paddled locomotion in the cypridoidean ostracode Cypridopsis vidua (Müller) [J]. Biological Bulletin, 2007, 212(1): 267-273. https://www.researchgate.net/publication/6504776_A_novel_crustacean_swimming_stroke_Coordinated_four-paddled_locomotion_in_the_cypridoidean_ostracode_Cypridopsis_vidua_Muller
    [42] ARNAUD J, BRUNET M, MAZZA J. Studies on the midgut of Centropages typicus (Copepod, Calanoida). Structural and Ultrastructural Data [J]. Cell and Tissue Research, 1978, 187(2): 333-353. doi:  10.1007%2FBF00224375.pdf
    [43] REYNOLDS E S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy [J]. Journal of Cell Biology, 1963, 17: 208-212. doi:  10.1083/jcb.17.1.208
    [44] HUI X. Environmental Toxicology [M]. Beijing: Chemical Industry Publishing House, 2003, 266-276.
    [45] REISH D L, OSHIDA P S. Manual of methods in aquatic environment research, part 10: short–term static bioassays [J]. FAO Fisheries Technical Paper, 1987, 247: 1-62. http://www.worldcat.org/title/manual-of-methods-in-aquatic-environment-research-part-10-short-term-static-bioassays/oclc/17236833
    [46] SPRAGUE J B. Measurement of pollutant toxicity to fish-Ⅲ: Sublethal effects and "safe" concentrations [J]. Water Research, 1971, 5(6): 245-266. doi:  10.1016/0043-1354(71)90171-0
    [47] BROOKS A, WHITE R M, PATON D C. Effects of heavy metals on the survival of Diacypris compacta (Herbst) (Ostracoda) from the Coorong, South Australia [J]. International Journal of Salt Lake Research, 1995, 4(2): 133-163. doi:  10.1007/BF01990800
    [48] VARDIA H K, RAO P S, DURVE V S. Effect of copper, cadmium and zinc on fish-food organisms, Daphnia lumholtzi and Cypris subglobosa [J]. Proceedings: Animal Sciences, 1988, 97(2): 175-180. doi:  10.1007/BF03179945
    [49] SHUHAIMI-OTHMAN M, NADZIFAH Y, NUR-AMALINA R et al. Toxicity of metals to a freshwater ostracod: Stenocypris major [J]. Journal of Toxicology, 2011, (3): 1-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090608/pdf/JT2011-136104.pdf
    [50] YILMAZ F, KÜLKÖYLÜOĞLU O. Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey) [J]. Ecological Research, 2006, 21(2): 165-173. doi:  10.1007/s11284-005-0121-2
    [51] SAIPAN P, TENGJAROENKUL B, PRAHKARNKAEO K. Accumulation of Arsenic and Cadmium in foods of animal origin collected from the local markets in northeastern region Thailand [J]. International Journal of Animal & Veterinary Advances, 2014, 6(4): 130-134. http://www.maxwellsci.com/print/ijava/v6-130-134.pdf
    [52] MENKE A, MUNTNER P, SILBERGELD E K, et al. Cadmium levels in urine and mortality among U.S. adults[J]. Environmental Health Perspectives, 2009, 117(2): 190-196. doi:  10.1289/ehp.11236
    [53] BERNHOFT R A. Cadmium Toxicity and Treatment [J]. The Scientific World Journal, 2013(7): 66-67. http://www.ncbi.nlm.nih.gov/pmc/articles/instance/3686085/pdf/TSWJ2013-394652.pdf
    [54] TAO S, LIANG T, CAO J, et al. Synergistic effect of copper and lead uptake by fish [J]. Ecotoxicology and Environmental Safety, 1999, 44(2): 190-195. doi:  10.1006/eesa.1999.1822
    [55] ZHOU X, ZHU G, SUN J, et al. Toxicity of copper, zinc, lead, cadmium to tissue's cellular DNA of the fish (Carassius auratus) [J]. Acta Agriculture Nucleatae Sinica, 2001, 15(3): 167-173.
    [56] ZALUPS R K, AHMAD S. Molecular handling of cadmium in transporting epithelia [J]. Toxicology and Applied Pharmacology, 2003, 186(3): 163-188. doi:  10.1016/S0041-008X(02)00021-2
    [57] LOEBUS J, LEITENMAIER B, MEISSNER D, et al. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis in cadmium detoxification [J]. Journal of Inorganic Biochemistry, 2013, 127: 253-260. doi:  10.1016/j.jinorgbio.2013.06.001
    [58] SHUKLA G S, HUSAIN T, SRIVASTAVA R S, et al. Glutathione peroxidase and catalase in livers, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal [J]. Industrial Health, 1989, 27(2): 59-69. doi:  10.2486/indhealth.27.59
    [59] LIU R, LIU Y. Study on relationship between lipid perxidation and inviability of isolated rat hepatocytes caused by Cadmium [J]. China Environmental Science, 1990, 10(3): 187-191.
    [60] VENUGOPAL N, ROMESH T R S L. Effects of cadmium on antioxidant enzyme activities and lipid pemxidation in freshwater field crab barytelphusa guerlni [J]. Bulletin of Environment Contamination Toxicology, 1997, 59: 132-138. doi:  10.1007/s001289900455
    [61] SOEGIANTO A, CHAMANTIER-DAURES M, TRILLES J P, et al. Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicas (Crustacea: Decapoda) [J]. Aquatic Living Resources, 1999, 12(1): 57-70. doi:  10.1016/S0990-7440(99)80015-1
    [62] LIU X, ZHOU Z, CHEN L. Effect of Cadmium on antioxidant enzyme activities of the juvenile Eniocheir sinensis[J]. Marine Sciences, 2003, 27(8): 59-63. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX200308015.htm
    [63] LEE S M, KIM H L, LEE S, et al. Toxicogenomic and signaling pathway analysis of low-dose exposure to cadmium chloride in rat liver [J]. Molecular & Cellular Toxicology, 2013, 9(4): 407-413. doi:  10.1007/s13273-013-0050-z
    [64] YANG Y, JIA X. Joint toxicity of Cu2+, Zn2+, and Cd2+ to tadpole of Bufo bufo gargarizans [J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(3): 356-359. https://www.researchgate.net/publication/283390484_Experimental_Analysis_in_Resistance_of_Toxic_Effects_of_Cd2_on_Potamogeton_crispus_Induced_by_Exogenous_Acetosalicylic_Acid
    [65] GOBE G, CRANE D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney [J]. Toxicology Letters, 2010, 198(1): 49-55. doi:  10.1016/j.toxlet.2010.04.013
    [66] LIU D, YAN B, YANG J, et al. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium [J]. Aquatic Toxicology, 2011, 105(3-4): 394-402. doi:  10.1016/j.aquatox.2011.07.013
    [67] CASALINO E, CALZARETTI G, SBLANO C, et al. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium [J]. Toxicology, 2002, 179(1-2): 37-50. doi:  10.1016/S0300-483X(02)00245-7
    [68] LIU D H, WANG M, ZOU J H, et al. Uptake and accumulation of cadmium and some nutrientions by roots and shoots of maize (Zea mays L.) [J]. Pakistan Journal of Botany, 2006, 38(3): 701-709. https://www.researchgate.net/publication/288428720_Uptake_and_accumulation_of_cadmium_and_some_nutrient_ions_by_roots_and_shoots_of_maize_Zea_mays_L
    [69] WANG L, SUN H. Effect of cadmium on ultrastructure of myocardial cell of freshwater crab, Sinopotamon yangtsekiense [J]. Acta Hydrobiogica Sinica, 2002, 26(1): 8-13. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SSWX200201001.htm
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  81
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 刊出日期:  2017-07-25

目录

    /

    返回文章
    返回