中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨领域推荐技术综述

陈雷慧 匡俊 陈辉 曾炜 郑建兵 高明

陈雷慧, 匡俊, 陈辉, 曾炜, 郑建兵, 高明. 跨领域推荐技术综述[J]. 华东师范大学学报(自然科学版), 2017, (5): 101-116, 137. doi: 10.3969/j.issn.1000-5641.2017.05.010
引用本文: 陈雷慧, 匡俊, 陈辉, 曾炜, 郑建兵, 高明. 跨领域推荐技术综述[J]. 华东师范大学学报(自然科学版), 2017, (5): 101-116, 137. doi: 10.3969/j.issn.1000-5641.2017.05.010
CHEN Lei-hui, KUANG Jun, CHEN Hui, ZENG Wei, ZHENG Jian-bing, GAO Ming. Techniques for cross-domain recommendation:A survey[J]. Journal of East China Normal University (Natural Sciences), 2017, (5): 101-116, 137. doi: 10.3969/j.issn.1000-5641.2017.05.010
Citation: CHEN Lei-hui, KUANG Jun, CHEN Hui, ZENG Wei, ZHENG Jian-bing, GAO Ming. Techniques for cross-domain recommendation:A survey[J]. Journal of East China Normal University (Natural Sciences), 2017, (5): 101-116, 137. doi: 10.3969/j.issn.1000-5641.2017.05.010

跨领域推荐技术综述

doi: 10.3969/j.issn.1000-5641.2017.05.010
基金项目: 

国家重点研发计划 2016YFB1000905

国家自然科学基金广东省联合重点项目 U1401256

国家自然科学基金 61402177

国家自然科学基金 61672234

国家自然科学基金 61402180

国家自然科学基金 61502236

国家自然科学基金 61363005

国家自然科学基金 61472321

详细信息
    作者简介:

    陈雷慧, 女, 硕士研究生, 研究方向为用户行为分析、点击率预测.E-mail:15720622991@163.com

    通讯作者:

    郑建兵, 男, 高级工程师, 研究方向为信息处理技术.E-mail:zhengjb@js.chinamobile.com

  • 中图分类号: TP181

Techniques for cross-domain recommendation:A survey

  • 摘要: 随着信息技术和互联网的飞速发展,信息过载的问题日趋严重.个性化推荐系统是解决这一问题的热门技术.推荐系统的核心在于推荐算法,在过去的十年里,基于单领域的协同过滤推荐算法应用最为广泛.但用户和项目数量的急剧增长使得传统的协同过滤推荐算法面临冷启动和数据稀疏问题的挑战.跨领域推荐旨在整合来自不同领域的用户偏好特征,针对每个用户自身特点进行智能化感知,精准满足用户个性化需求,从而提高目标领域推荐结果的准确性和多样性,现已成为推荐系统研究领域中的热门话题.本文首先对跨领域推荐技术进行系统地研究和分析,概述跨领域推荐算法的相关概念、技术难点;其次对现有的跨领域推荐技术进行分类,总结出各自的优点及不足;最后对跨领域推荐算法的性能分析方法进行详尽的介绍.
  • 图  1  跨领域推荐系统流程

    Fig.  1  The process for cross-domain recommendation

    图  2  跨域推荐的3类场景

    Fig.  2  Cross-domain recommendation scenarios

    图  3  集中式的协同过滤模型

    Fig.  3  Centralized collaborative filtering model

    图  4  不规则的用户-项目-领域三阶张量转换为规则的张量

    Fig.  4  Slices of rating matrices for each domain are transformed into a cubical tensor

    图  5  星型结构混合图

    Fig.  5  A Star-structured hybrid graph

    图  6  跨领域多部图

    Fig.  6  A multi-partite graph across two domains

    表  1  跨域推荐各模型的优点和缺点

    Tab.  1  Advantages and disadvantages of different methods in cross-domain recommendation

    跨域推荐场景方法优点缺点
    领域间用户
    完全重叠
    基于协同过滤
    关系的方法
    基于矩阵合并的
    跨域推荐[10-11]
    简单, 能直接应用传统
    的协同过滤推荐算法
    不同领域需要一致的
    评分机制, 忽略领域
    差异性
    基于联合矩阵分解的
    跨域推荐[12-14]
    框架灵活, 效果显著对权重参数敏感, 导致
    难以完全保留领域间
    的差异性
    基于张量分解的
    跨域推荐[15-17, 21]
    保留领域独立性特征,
    对解决冷启动问题
    效果显著
    必须构建出规则的
    多阶张量
    基于语义关系的方法基于图模型的跨域
    推荐[23-24]
    能够解决数据异构、数
    据稀疏、冷启动问题
    需要学习大量的参
    数, 训练时间长
    基于深度学习的方法///
    领域间用户
    完全不重叠
    基于协同过滤关系
    的方法
    基于联合矩阵分解的
    跨域推荐[28-29]
    框架灵活, 效果显著对用户、项目之间相
    似度的计算敏感
    基于评分聚类的跨域
    推荐[1, 6, 8, 32]
    模型简单, 易于训练缺少理论支撑, 领域
    间必须存在强相关
    基于语义关系的方法基于标签分类体系的
    跨域推荐[36-38]
    利用外部知识库最大
    程度上找出领域间偏
    好相似的用户
    对标签信息和外部
    知识库要求高
    基于语义关系图的跨
    域推荐[41-44]
    很好的解决数据异构
    和数据稀疏问题
    对外部知识库敏感,
    训练复杂
    基于LDA主题模型的
    跨域推荐[40]
    在目标领域没有用户
    行为数据时也能有较
    好的推荐性能
    对标签信息稀疏程度
    敏感, 影响模型准
    确度
    基于深度学习的方法///
    领域间部分
    重叠
    基于协同过滤关系的
    方法
    基于用户近邻的跨域
    推荐[11, 46-47]
    模型简单, 能够提供
    推荐解释
    对领域间用户重叠
    程度敏感
    基于联合矩阵分解的
    跨域推荐[45]
    框架灵活, 效果显著
    基于图模型的跨域
    推荐[48-49]
    能够解决数据异构、数
    据稀疏、冷启动问题
    需要学习大量的参
    数, 训练时间长
    基于语义关系的方法///
    基于深度学习的方法基于Embedding技术
    的跨域推荐[50]
    基于已有word2vec工
    具, 训练过程相对
    简单、稳定
    处于初步研究阶段,
    还有很多需要进一步
    探索
    下载: 导出CSV

    表  2  跨领域推荐算法性能评测指标

    Tab.  2  Summary of metrics used for the evaluation of cross-domain recommendation

    类别度量指标相关文献实验方法
    准确度预测的精度指标MAE[1][4][8][9][10][11][12][13][15]
    [17][12][23][28][32][33][34][48]
    离线实验、在线实验
    RMSE[4][13][12][23][27][45]
    分类的精度指标Precision[23][24][31][40][43][44]
    Recall[17][23][24][31][40][44]
    排序的精度指标MAP[12][23][45]
    AUC[14][17]
    F1-Measure[10][23][40]
    nDCG[24]
    覆盖率信息熵、基尼系数/
    多样性推荐列表中项目两两之间的不相似性/
    用户体验新颖度、惊喜度、用户满意度/在线实验、用户调查
    下载: 导出CSV
  • [1] LI B, YANG Q, XUE X. Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction.[C]//Proceedings of the International Joint Conference on Artificial Intelligence.USA:DBLP, 2009:2052-2057.
    [2] CANTADOR I, FERNáNDEZ-TOBíAS I, BERKOVSKY S, et al. Cross-Domain Recommender Systems[M]//Recommender Systems Handbook. US:Springer, 2015:919-959.
    [3] ZHAO L, XIANG E W, XIANG E W, et al. Active transfer learning for cross-system recommendation[C]//Twenty-Seventh AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2013:1205-1211.
    [4] PAN W, XIANG E W, YANG Q. Transfer learning in collaborative filtering with uncertain ratings[C]//TwentySixth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2012:662-668.
    [5] LI B. Cross-domain collaborative filtering:A brief survey[C]//IEEE, International Conference on TOOLS with Artificial Intelligence.[S.l.]:IEEE Computer Society, 2011:1085-1086.
    [6] 罗浩. 基于跨域信息推荐的算法研究[D]. 北京: 北京邮电大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10013-1015524720.htm
    [7] FERNÁNDEZ-TOB ÍAS I, CANTADOR I, KAMINSKAS M, et al. Cross-domain recommender systems:A survey of the State of the Art[C]//Proc 2nd Spanish Conf Inf Retrieval.[S.l.]:[S.n.], 2012:187-198.
    [8] LI B, YANG Q, XUE X. Transfer learning for collaborative filtering via a rating-matrix generative model[C]//International Conference on Machine Learning, ICML 2009. Canada:DBLP, 2009:617-624.
    [9] WINOTO P, TANG T. If you like the Devil Wears Prada the book, will you also enjoy the Dvil Wears Prada the movie? A study of cross-domain recommendations[J]. New Generation Computing, 2008, 26(3):209-225. doi:  10.1007/s00354-008-0041-0
    [10] BERKOVSKY S, KUFLIK T, RICCI F. Mediation of user models for enhanced personalization in recommender systems[J]. User Modeling and User-Adapted Interaction, 2008, 18(3):245-286. doi:  10.1007/s11257-007-9042-9
    [11] BERKOVSKY S, KUFLIK T, RICCI F. Cross-domain mediation in collaborative filtering[C]//User Modeling 2007, International Conference. Greece:DBLP, 2007:355-359.
    [12] SINGH, AJIT P, GORDON, et al. Relational learning via collective matrix factorization[J]. Relational Learning via Collective Matrix Factorization, 2008:650-658. http://portal.acm.org/citation.cfm?id=1401969
    [13] PAN W, YANG Q. Transfer learning in heterogeneous collaborative filtering domains[J]. Artificial Intelligence, 2013, 197(4):39-55. http://dl.acm.org/citation.cfm?id=2451997.2452280
    [14] XIN X, LIU Z, LIN C Y, et al. Cross-domain collaborative filtering with review text[C]//International Conference on Artificial Intelligence. USA:AAAI Press, 2015:1827-1833.
    [15] WEI C, HSU W, LEE M L. A unified framework for recommendations based on quaternary semantic analysis[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2011:1023-1032.
    [16] ARORA A, TANEJA V, PARASHAR S, et al. Cross-domain based event recommendation using tensor factorization[J]. Open Computer Science, 2016, 6(1):32-37. http://www.sciencedirect.com/science/article/pii/S0957417417306449
    [17] HU L, CAO J, XU G, et al. Personalized recommendation via cross-domain triadic factorization[J]. Proc 22nd Int World Wide Web Conf, 2014:595-606. http://dblp.uni-trier.de/db/conf/www/www2013.html#HuCXCGZ13
    [18] ZHOU G, HE Z, ZHANG Y, et al. Canonical polyadic decomposition:From 3-way to N-way[C]//Eighth International Conference on Computational Intelligence and Security.[S.l.]:IEEE, 2012:391-395.
    [19] SCHMITZ S K, HASSELBACH P P, EBISCH B, et al. Application of parallel factor analysis (PARAFAC) to electrophysiological data.[J]. Front Neuroinform, 2014(8):84. doi:  10.3389/fninf.2014.00084/pdf
    [20] KIERS H A L. An alternating least squares algorithm for PARAFAC2 and three-way DEDICOM[J]. Computational Statistics & Data Analysis, 1993, 16(1):103-118. https://ideas.repec.org/a/eee/csdana/v16y1993i1p103-118.html
    [21] SONG T, PENG Z, WANG S, et al. Review-based cross-domain recommendation through joint tensor factorization[C]//Database Systems for Advanced Applications.[S.l.]:DASFAA, 2017:525-540.
    [22] LI H, LIN R, HONG R, et al. Generative models for mining latent aspects and their ratings from short reviews[C]//2015 IEEE International Conference on Data Mining. USA:IEEE, 2015:241-250.
    [23] JIANG M, CUI P, CHEN X, et al. Social recommendation with cross-domain transferable knowledge[J]. IEEE Transactions on Knowledge & Data Engineering, 2015, 27(11):3084-3097. http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=7106547
    [24] YANG D, HE J, QIN H, et al. A graph-based recommendation across heterogeneous domains[J]. 2016:1075-1080.
    [25] ZHANG J, YU P S. Multiple anonymized social networks alignment[C]//IEEE International Conference on Data Mining.[S.l.]:IEEE Computer Society, 2015:599-608.
    [26] KOUTRA D, TONG H, LUBENSKY D. BIG-ALIGN:Fast bipartite graph alignment[C]//IEEE International Conference on Data Mining.[S.l.]:IEEE, 2013:389-398.
    [27] LI C Y, LIN S D. Matching Users and Items Across Domains to Improve the Recommendation Quality[M]. New York:ACM, 2014:801-810.
    [28] SHI Y, LARSON M, HANJALIC A. Tags as bridges between domains:Improving recommendation with taginduced cross-domain collaborative filtering[C]//User Modeling, Adaption and Personalization, International Conference. USA:DBLP, 2011:305-316.
    [29] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//International Conference on Neural Information Processing Systems. USA:Curran Associates, 2007:1257-1264.
    [30] DING C, LI T, PENG W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[J]. Proc 12th ACM SIGKDD, 2006:126-135. http://dblp.uni-trier.de/db/conf/kdd/kdd2006.html#DingLPP06
    [31] CHEN W, HSU W, LEE M L. Making recommendations from multiple domains[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA:ACM, 2013:892-900.
    [32] REN S, GAO S, LIAO J, et al. Improving cross-domain recommendation through probabilistic cluster-level latent factor model[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2015:4200-4201.
    [33] GAO S, LUO H, CHEN D, et al. Cross-domain recommendation via cluster-level latent factor model[C]//Proceedings, Part Ⅱ, of the European Conference on Machine Learning and Knowledge Discovery in Databases. New York:Springer-Verlag, 2013:161-176.
    [34] MORENO O, SHAPIRA B, ROKACH L, et al. TALMUD:transfer learning for multiple domains[C]//ACM International Conference on Information and Knowledge Management. New York:ACM, 2012:425-434.
    [35] CHUNG R, SUNDARAM D, SRINIVASAN A. Integrated personal recommender systems[C]//International Conference on Electronic Commerce:the Wireless World of Electronic Commerce. USA:DBLP, 2007:65-74.
    [36] SZOMSZOR M, ALANI H, CANTADOR I, et al. Semantic Modelling of User Interests Based on CrossFolksonomy Analysis[M]. Germany:Springer Berlin Heidelberg, 2008:632-648.
    [37] ABEL F, HERDER E, HOUBEN G J, et al. Cross-system user modeling and personalization on the social web[J]. User Modeling and User-Adapted Interaction, 2013, 23(2-3):169-209. doi:  10.1007/s11257-012-9131-2
    [38] FERNÁNDEZ-TOBíAS I, CANTADOR I, PLAZA L. An emotion dimensional model based on social tags:Crossing folksonomies and enhancing recommendations[J]. Lecture Notes in Business Information Processing, 2013, 152:88-100. doi:  10.1007/978-3-642-39878-0
    [39] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[M]. J Mach Learn Res, 2003(3):993-1022.
    [40] KUMAR A, KUMAR N, HUSSAIN M, et al. Semantic clustering-based cross-domain recommendation[C]//Computational Intelligence and Data Mining.[S.l.]:IEEE, 2014:137-141.
    [41] LOIZOU A. How to recommend music to film buffs:Enabling the provision of recommendations from multiple domains[J]. University of Southampton, 2009.
    [42] KAMINSKAS M, RICCI F. A generic semantic-based framework for cross-domain recommendation[C]//International Workshop on Information Heterogeneity and Fusion in Recommender Systems. New York:ACM, 2011:25-32.
    [43] KAMINSKAS M, FERNÁNDEZ-TOB ÍAS I, CANTADOR I, et al. Ontology-Based Identification of Music for Places[M]//Information and Communication Technologies in Tourism. Germany:Springer Berlin Heidelberg, 2013:436-447.
    [44] HEITMANN B, HAYES C. SemStim at the LOD-RecSys 2014 Challenge[M]//Semantic Web Evaluation Challenge. Germany:Springer International Publishing, 2014:170-175.
    [45] JIANG M, CUI P, YUAN N J, et al. Little is much:bridging cross-platform behaviors through overlapped crowds[C]//Thirtieth AAAI Conference on Artificial Intelligence. USA:AAAI Press, 2016:13-19.
    [46] SHAPIRA B, ROKACH L, FREILIKHMAN S. Facebook single and cross domain data for recommendation systems[J]. User Modeling and User-Adapted Interaction, 2013, 23(2/3):211-247.
    [47] TIROSHI A, KUFLIK T. Domain Ranking for Cross Domain Collaborative Filtering[M]//User Modeling, Adaptation, and Personalization. Germany:Springer Berlin Heidelberg, 2012:328-333.
    [48] NAKATSUJI M, FUJIWARA Y, TANAKA A, et al. Recommendations over domain specific user graphs[C]//European Conference on Artificial Intelligence. USA:DBLP, 2010:607-612.
    [49] TIROSHI A, BERKOVSKY S, KAAFAR M A, et al. Cross social networks interests predictions based ongraph features[C]//ACM Conference on Recommender Systems. New York:ACM, 2013:319-322.
    [50] KRISHNAMURTHY B, PURI N, GOEL R. Learning vector-space representations of items for recommendations using word embedding models[J]. Procedia Computer Science, 2016, 80:2205-2210. doi:  10.1016/j.procs.2016.05.380
    [51] PEROZZI B, ALRFOU R, SKIENA S. Deepwalk:Online learning of social representations[C]//The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York:ACM, 2014:701-710.
    [52] GROVER A, LESKOVEC J. node2vec:Scalable feature learning for networks[C]//ACM SIGKDD International Conference. New York:ACM, 2016:855-864.
    [53] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//ACM SIGKDD International Conference. New York:ACM, 2016:1225-1234.
    [54] TANG J, QU M, WANG M, et al. LINE:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.[S.l.]:International World Wide Web Conference Committee, 2015:1067-1077.
    [55] CAO S, LU W, XU Q. GraRep:Learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York:ACM, 2015:891-900.
    [56] LI C, WANG S, YANG D, et al. PPNE:Property Preserving Network Embedding[C]//Database Systems for Advanced Applications, 22nd International Conference.[S.l.]:DASFAA, 2017:163-179.
    [57] LI C, LI Z, WANG S, et al. Semi-supervised network embedding[C]//Database Systems for Advanced Applications, 22nd International Conference.[S.l.]:DASFAA, 2017:131-147.
    [58] 项亮.推荐系统实践[M].北京:人民邮电出版社, 2012.
    [59] SHANI G, GUNAWARDANA A. Evaluating Recommendation Systems[M]//Recommender Systems Handbook, 2011:257-297.
    [60] SAHEBI S, BRUSILOVSKY P. Cross-Domain Collaborative Recommendation in a Cold-Start Context:The Impact of User Profile Size on the Quality of Recommendation[M]. Germany:Springer, 2013:289-295.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  201
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-20
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回