中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海市河道水环境与蚊幼孳生关系分析

马明海 刘善文 黄民生 冷培恩

马明海, 刘善文, 黄民生, 冷培恩. 上海市河道水环境与蚊幼孳生关系分析[J]. 华东师范大学学报(自然科学版), 2017, (6): 156-163. doi: 10.3969/j.issn.1000-5641.2017.06.015
引用本文: 马明海, 刘善文, 黄民生, 冷培恩. 上海市河道水环境与蚊幼孳生关系分析[J]. 华东师范大学学报(自然科学版), 2017, (6): 156-163. doi: 10.3969/j.issn.1000-5641.2017.06.015
MA Ming-hai, LIU Shan-wen, HUANG Min-sheng, LENG Pei-en. Analysis on relationship between mosquito larvae breeding and river water environment in Shanghai[J]. Journal of East China Normal University (Natural Sciences), 2017, (6): 156-163. doi: 10.3969/j.issn.1000-5641.2017.06.015
Citation: MA Ming-hai, LIU Shan-wen, HUANG Min-sheng, LENG Pei-en. Analysis on relationship between mosquito larvae breeding and river water environment in Shanghai[J]. Journal of East China Normal University (Natural Sciences), 2017, (6): 156-163. doi: 10.3969/j.issn.1000-5641.2017.06.015

上海市河道水环境与蚊幼孳生关系分析

doi: 10.3969/j.issn.1000-5641.2017.06.015
基金项目: 

国家科技重大专项 2013ZX07310001

国家科技重大专项 2014ZX07101012

国家自然科学基金 51278192

普陀区高层次人才科研创新项目 普人才2014-A-18

详细信息
    作者简介:

    马明海, 男, 博士研究生, 研究方向为河道治理与修复.E-mail:maminghai@hsu.edu.cn

    通讯作者:

    黄民生, 男, 教授, 博士生导师, 研究方向为水环境治理与修复.E-mail:mshuang@des.ecnu.edu.cn

  • 中图分类号: X835

Analysis on relationship between mosquito larvae breeding and river water environment in Shanghai

  • 摘要: 为探究影响河道蚊虫孳生的水环境因素,2012年7月至2013年7月,对上海市7条河道进行蚊幼采集及水质分析,采用模糊聚类法评价河道水质,对蚊幼密度与水质的耦联关系进行相关性分析.结果表明,7条河道中有3条阳性河道,优势蚊种为淡色库蚊.城市河道水体蚊幼孳生的季节为春末夏初,5月蚊幼密度最大.河道蚊幼密度与水中溶解态磷酸盐(DP)呈显著正相关关系(p < 0.01),当河道水体中叶绿素a(Chla)浓度小于80 mg/m3时,蚊幼密度随着Chla浓度的增加而显著增加(p < 0.05).在合适的水环境背景下,缓流型河道可成为蚊虫潜在的孳生地.
  • 图  1  河道采样点空间分布示意图

    Fig.  1  The diagram of spatial distribution of sampling sites in rivers

    图  2  聚类分析树状图

    Fig.  2  Dendrogram of cluster analysis

    图  3  河道蚊幼时空分布

    Fig.  3  Special and temporal distribution of larvae in the studied rivers

    表  1  城市河道水质参数

    Tab.  1  water quality parameters of the study rivers

    河道 pH WT/℃ DO/(mg$\cdot $L$^{-1})$ SD/cm NH$_{4}^{+}$-N/(mg$\cdot $L$^{-1})$ DP/(mg$\cdot $L$^{-1})$ COD$_{\rm Cr }$/(mg$\cdot $L$^{-1})$ Chla/(mg$\cdot $m$^{-3})$
    丽娃河 8.14$\pm $0.63 23.75$\pm $5.30 8.37$\pm $5.71 79.16$\pm $15.27 0.56$\pm $1.37 0.14$\pm $0.16 14.14$\pm $6.85 10.69$\pm $4.56
    梦清园 7.60$\pm $0.46 24.22$\pm $5.20 3.85$\pm $3.50 35.33$\pm $13.64 3.82$\pm $2.17 0.38$\pm $0.20 29.17$\pm $9.75 23.07$\pm $20.37
    工业河 8.25$\pm $0.52 24.37$\pm $6.77 6.52$\pm $7.02 36.43$\pm $9.66 8.31$\pm $2.66 0.71$\pm $0.21 46.47$\pm $18.45 88.93$\pm $66.25
    桃浦河 7.73$\pm $0.25 25.78$\pm $5.61 2.32$\pm $2.42 33.64$\pm $5.68 6.95$\pm $1.92 0.45$\pm $0.11 29.21$\pm $6.50 30.01$\pm $21.77
    长浜 8.89$\pm $0.81 24.56$\pm $6.34 13.88$\pm $6.23 25.33$\pm $11.21 4.31$\pm $2.82 0.39$\pm $0.25 37.51$\pm $8.99 111.62$\pm $71.04
    江河 7.76$\pm $0.14 23.04$\pm $5.86 1.69$\pm $1.57 38.74$\pm $14.86 6.40$\pm $1.83 0.58$\pm $0.24 39.17$\pm $9.71 46.96
    樱桃河 7.84$\pm $0.53 24.34$\pm $5.63 5.30$\pm $3.38 39.83$\pm $12.59 0.90$\pm $0.46 0.17$\pm $0.06 18.91$\pm $9.58 11.58$\pm $4.80
    下载: 导出CSV

    表  2  河道水质参数与蚊幼密度的相关系数矩阵($N=70$)

    Tab.  2  Correlation matrix of larval density and water quality parameters of rivers ($N=70$)

    LD pH WT DO SD NH$_{4}^{+}$-N DP COD$_{\rm Cr}$ Chla
    LD 1
    pH $-$0.09 1
    WT 0.127 $-$0.184 1
    DO $-$0.217 0.846$^{\ast \ast }$ 0.016 1
    SD 0.051 $-$0.075 $-$0.116 $-$0.013 1
    NH$_{4}^{+}-$N 0.206 $-$0.078 $-$0.022 $-$0.247$^{\ast }$ $-$0.467$^{\ast \ast }$ 1
    DP 0.416$^{\ast \ast }$ $-$0.069 0.124 $-$0.232 $-$0.374$^{\ast \ast}$ 0.855$^{\ast \ast }$ 1
    COD$_{\rm Cr}$ 0.095 0.137 0.033 0.017 $-$0.506$^{\ast \ast }$ 0.647$^{\ast \ast }$ 0.556$^{\ast \ast }$ 1
    Chla 0.119 0.539$^{\ast \ast }$ 0.02 0.464$^{\ast \ast }$ $-$0.389$^{\ast \ast }$ 0.281$^{\ast }$ 0.243$^{\ast }$ 0.570$^{\ast \ast }$ 1
    注:*表示在0.05水平(双侧)上显著相关, **表示在0.01水平(双侧)上显著相关
    下载: 导出CSV

    表  3  蚊幼孳生高峰期河道水质与蚊幼密度的相关系数矩阵($N=7$)

    Tab.  3  Correlation matrix of larval density with water quality during the mosquito}} \centerline{breeding peak ($N=7$)

    LD pH WT DO SD NH$_{4}^{+}$-N DP COD$_{\rm Cr}$ Chla
    LD 1
    pH $-$0.064 1
    WT $-$0.531 0.458 1
    DO $-$0.447 0.865$^{\ast }$ 0.479 1
    SD $-$0.057 0.017 $-$0.594 0.089 1
    NH$_{4}^{+}$-N 0.341 0.325 0.536 0.072 $-$0.808$^{\ast }$ 1
    DP 0.536 0.214 0.213 0.013 $-$0.712 0.909$^{\ast \ast }$ 1
    COD$_{\rm Cr}$ 0.186 0.646 0.702 0.350 $-$0.611 0.890$^{\ast \ast }$ 0.683 1
    Chla 0.804$^{\ast }$ 0.361 $-$0.083 0.007 $-$0.377 0.738 0.865$^{\ast }$ 0.620 1
    注: *表示在0.05水平(双侧)上显著相关, **表示在0.01水平(双侧)上显著相关
    下载: 导出CSV
  • [1] CHANG H. Spatial analysis of water quality trends in the Han River basin, South Korea[J]. Water Research, 2008, 42(13):3285-3304. doi:  10.1016/j.watres.2008.04.006
    [2] EVERARD M, MOGGRIDGE H L. Rediscovering the value of urban rivers[J]. Urban Ecosystem, 2012, 15(2):293-314. doi:  10.1007/s11252-011-0174-7
    [3] SHORT A G. Governing change:Land-use change and the prevention of nonpoint source pollution in the north coastal basin of California[J]. Environmental Management, 2013, 51(1):108-125. doi:  10.1007/s00267-011-9729-x
    [4] WANG X, LI J Q, LI Y X, et al. Is urban development an urban river killer? A case study of Yongding Diversion Channel in Beijing, China[J]. Journal of Environmental Sciences, 2014, 26(6):1232-1237. doi:  10.1016/S1001-0742(13)60593-8
    [5] HWANG S J, LEE S W, YOO B. Ecological conservation and the restoration of freshwater environments in Korea[J]. Paddy and Water Environment, 2014, 12(1):1-5. doi:  10.1007/s10333-012-0353-z
    [6] VYMAZAL J. Emergent plants used in free water surface constructed wetlands:A review[J]. Ecological Engineering, 2013, 61(19):582-592. http://www.sciencedirect.com/science/article/pii/S0925857413002243
    [7] SCHAFFNER F, MEDLOCK J M, VAN B W. Public health significance of invasive mosquitoes in Europe[J]. Clinical Microbiology Infection, 2013, 19(8):685-692. doi:  10.1111/1469-0691.12189
    [8] BECKER N, PETRIC D, ZGOMBA M, et al. Mosquitoes and Their Control[M]. New York:Kluwer Academic/Plenum Publishers, 2010.
    [9] MWANGANGI J M, MBOGO C M, ORINDI B O, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years[J]. Malaria Journal, 2013, 12(1):1-9. doi:  10.1186/1475-2875-12-1
    [10] NSA D, NANTHASANE V, RAZAK S, et al. Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and suburban villages in Thailand and Laos[J]. Acta Tropical, 2013, 126(3):177-185. doi:  10.1016/j.actatropica.2013.02.023
    [11] SAVAGE H, MILLER B. House mosquitoes of the U.S.A., Culex pipiens complex[J]. Wing Beats, 1995(6):8-9. https://www.researchgate.net/publication/286295128_House_mosquitoes_of_the_USA_Culex_pipiens_complex
    [12] WALTON W E, POPKO D A, DAM A R V, et al. Width of planting beds for emergent vegetation influences mosquito production from a constructed wetland in California (USA)[J]. Ecological Engineering, 2012, 42(3):150-159. http://www.sciencedirect.com/science/article/pii/S0925857412000638
    [13] MA M H, HUANG M S, LENG P E. Abundance and distribution of immature mosquitoes in urban rivers proximate to their larval habitats[J]. Acta Tropical, 2016, 163:121-129 doi:  10.1016/j.actatropica.2016.08.010
    [14] MUTURI E J, MWANGANGI J, SHILILU J, et al. Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya[J]. Journal of Vector Ecology, 2008, 33(1):56-63. doi:  10.3376/1081-1710(2008)33[56:EFAWTD]2.0.CO;2
    [15] LAGHMICH A, LADRIERE L, MALAISSE-LAGAE F, et al. Long term impacts of combined sewer overflow remediation on water quality and population dynamics of Culex quinquefasciatus, the main urban West Nile virus vector in Atlanta, GA[J]. Environmental Research, 2014, 129(2):20-26. http://europepmc.org/abstract/MED/24528998
    [16] GARDNER A M, ANDERSON T K, HAMER G L, et al. Terrestrial vegetation and aquatic chemistry influence larval mosquito abundance in catch basins, Chicago, USA[J]. Parasites & Vectors, 2013, 6(1):1-11. http://d.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3549783
    [17] VANLALRUIA K, SENTHILKUMAR N, GURUSUBRAMANIAN G. Diversity and abundance of mosquito species in relation to their larval habitats in Mizoram, North Eastern Himalayan region[J]. Acta Tropica, 2014, 137(3):1-18. http://www.ncbi.nlm.nih.gov/pubmed/24795213
    [18] SCBRANDOUR J, WILLISON J, THUILLER W, et al. Environmental drivers for Coquillettidia mosquito habitat selection:A method to highlight key field factors[J]. Hydrobiologia, 2010, 652(1):377-388. doi:  10.1007/s10750-010-0372-y
    [19] SOLEIMANI-AHMADI M, VATANDOOST H, ZARE M. Characterization of larval habitats for anopheline mosquitoes in a malarious area under elimination program in the southeast of Iran[J]. Asian Pacific Journal of Tropical Biomedicine, 2014, 4(z1):S73-S80. http://europepmc.org/articles/PMC4025279
    [20] 马明海, 黄民生, 胡伟, 等.上海市6条中小河道水质月动态评价及解析[J].华东师范大学学报(自然科学版), 2015(2):30-39. http://xblk.ecnu.edu.cn/CN/abstract/abstract25123.shtml
    [21] BECKER N. Influence of climate change on mosquito development and mosquito-borne diseases in Europe[J]. Parasitology Research, 2008, 103(S1):19-28. doi:  10.1007/s00436-008-1210-2
    [22] KWEKA E J, ZHOU G, THOMAS M, et al. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands[J]. Parasit Vectors, 2011, 4(1):1-7. doi:  10.1186/1756-3305-4-1
    [23] 张海春, 胡雄星, 韩中豪.黄浦江水系水质变化及原因分析[J].中国环境监测, 2013, 29(4):55-59. http://d.wanfangdata.com.cn/Periodical/zghjjc201304012
    [24] REICHARD M, WATTERS B R, WILDEKAMP R H, et al. Potential negative impacts and low effectiveness in the use of African annual killifish in the biocontrol of aquatic mosquito larvae in temporary water bodies[J]. Parasites & Vectors, 2010, 3(1):1-6. http://d.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2945331
    [25] 徐承龙, 姜志宽.蚊虫防治(六)-蚊虫调查与灭效考核[J].中华卫生杀虫药械, 2007, 13(3):220-223. http://d.wanfangdata.com.cn/Periodical/zhwsscyx200703024
    [26] 高强, 周毅彬, 冷培恩, 等.不同环境与昼夜时段成蚊密度的季节变化趋势研究[J].中华卫生杀虫药械, 2014, 20(6):520-523. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wssc201406005&dbname=CJFD&dbcode=CJFQ
    [27] 郝延玉, 于瑞洪.污水沟蚊幼分布调查研究[J].中华卫生杀虫药械, 2002, 8(2):36-37. http://d.wanfangdata.com.cn/Periodical/zhwsscyx200202016
    [28] 邓天福, 莫建初.糖和维生素对淡色库蚊及白纹伊蚊产卵选择的影响[J].中国媒介生物学及控制杂志, 2011, 22(2):114-116. http://d.wanfangdata.com.cn/Periodical/zgmjswxjkzzz201102005
    [29] KNIGHT R L, WALTON W E, O'MEARA G F, et al. Strategies for effective mosquito control in constructed treatment wetlands[J]. Ecological Engineering, 2003, 21(5):211-232. http://www.sciencedirect.com/science/article/pii/S0925857403001058
    [30] SMITH K E. Characterization of pH and ion regulatory proteins in larval mosquitoes[D]. Florida:The graduate school of the university of florida, 2009. https://core.ac.uk/display/32830181
    [31] 张世萍, 杨洲, 聂刘明, 等.影响库蚊幼虫摄食鱼腥藻的因素[J].水生生物学报, 2002, 26(1):39-44. http://d.wanfangdata.com.cn/Periodical/ssswxb200201007
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  91
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回