中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

布尔网络到离散时间马尔科夫模型的转换及性质研究——以大鼠干细胞基因调控网络为例

吕悦 张敏 秦旭东 严佳

吕悦, 张敏, 秦旭东, 严佳. 布尔网络到离散时间马尔科夫模型的转换及性质研究——以大鼠干细胞基因调控网络为例[J]. 华东师范大学学报(自然科学版), 2018, (1): 59-75, 90. doi: 10.3969/j.issn.1000-5641.2018.01.007
引用本文: 吕悦, 张敏, 秦旭东, 严佳. 布尔网络到离散时间马尔科夫模型的转换及性质研究——以大鼠干细胞基因调控网络为例[J]. 华东师范大学学报(自然科学版), 2018, (1): 59-75, 90. doi: 10.3969/j.issn.1000-5641.2018.01.007
LYU Yue, ZHANG Min, QIN Xu-dong, YAN Jia. The transition and properties from Boolean networks to discrete-time Markov chains: A case study of mice stem cell gene regulatory networks[J]. Journal of East China Normal University (Natural Sciences), 2018, (1): 59-75, 90. doi: 10.3969/j.issn.1000-5641.2018.01.007
Citation: LYU Yue, ZHANG Min, QIN Xu-dong, YAN Jia. The transition and properties from Boolean networks to discrete-time Markov chains: A case study of mice stem cell gene regulatory networks[J]. Journal of East China Normal University (Natural Sciences), 2018, (1): 59-75, 90. doi: 10.3969/j.issn.1000-5641.2018.01.007

布尔网络到离散时间马尔科夫模型的转换及性质研究——以大鼠干细胞基因调控网络为例

doi: 10.3969/j.issn.1000-5641.2018.01.007
基金项目: 

国家自然科学基金 6167202

详细信息
    作者简介:

    吕悦, 女, 硕士研究生, 研究方向为形式化验证.E-mail:lvyue2013@foxmail.com

    通讯作者:

    张敏, 女, 副教授, 研究方向为形式化验证.E-mail:mzhang@sei.ecnu.edu.cn

  • 中图分类号: TP3-05

The transition and properties from Boolean networks to discrete-time Markov chains: A case study of mice stem cell gene regulatory networks

  • 摘要: 提出了一种基于概率模型检测技术的新方法用于解决生物工程中基因调控网络探查吸引子这一关键问题.以大鼠干细胞基因调控网络的吸引子找寻这样一个具体问题为例,将布尔网络表示的基因调控网络的更新函数通过对应的真值表,转换为离散时间马尔科夫链,写入模型检测工具PRISM中;之后通过验证模型的系统性质的技术去验证每个基因在很长一段时间之后的激活概率,以此找到基因调控网络中的吸引子.同时,通过添加基因扰动的方式,改变每个基因的激活/抑制概率,可以找到每个基因对其他基因的促进/抑制关系.实验表明,大鼠干细胞基因中有7个基因在一段时间后状态不变,剩余基因的变化共同构成了一个吸引环.整个检测流程简洁易用,可以直接找出吸引子.进一步地,实验准确地找出了大鼠干细胞中Gata1基因的抑制/促进对象,此实验结果对解决大鼠的白血球减少症有着治疗方面的意义.
  • 图  1  a) 布尔网络单吸引子举例; (b)布尔网络吸引环举例

    Fig.  1  (a) An example of Boolean network singleton attractors; (b) An example of Boolean network cyclic attractors

    图  2  总技术路线

    Fig.  2  The overall technical route

    图  3  布尔网络转换为DTMC模型技术路线

    Fig.  3  The transition technical route from Boolean network to DTMC

    图  4  吸引子找寻技术路线

    Fig.  4  The technical route of detecting attractors

    图  5  基因间相互关系找寻技术路线

    Fig.  5  The technical route of detecting gene relations

    表  1  EKLF的更新函数转换产生的真值表

    Tab.  1  The truth table of gene EKLF's update function

    EKLFGata1Fli1
    000
    001
    110
    011
    下载: 导出CSV

    表  2  大鼠干细胞基因布尔更新函数

    Tab.  2  Mice stem cell gene regulatory network's Boolean update function

    GeneUpdate function
    Gata 2$\rm Gata2\wedge\neg(Pu.1\vee(Gata1\wedge Fog1))$
    Gata1$\rm (Gata1\vee Gata2\vee Fil1)\wedge\neg Pu.1$
    Fog1Gata1
    EKLF$\rm Gata1\wedge\neg Fli1$
    Flil$\rm Gata1\wedge\neg EKLF$
    Scl$\rm Gata1\wedge\neg Pu.1$
    Cebpa$\rm Cebpa\wedge\neg(Scl\vee(Fog1\wedge Gata1))$
    Pu.1$\rm (Cebpa\vee Pu.1)\wedge\neg(Gata1\vee Gata2)$
    cJun$\rm Pu.1\wedge\neg Gfi1$
    EgrNab$\rm (Pu.1\wedge cJun )\wedge\neg Gfi1$
    Gfi1$\rm Cebpa\wedge\neg EgrNab$
    下载: 导出CSV

    表  3  吸引子找寻相关信息计算结果

    Tab.  3  The result of attractor finding information

    公式基因长期激活概率基因种类
    $S$=?[Gata2=1] 0 抑制基因
    $S$=?[Gata1=1] 0
    $S$=?[Fog1=1] 0
    $S$=?[EKLF=1] 0
    $S$=?[Fli1=1] 0
    $S$=?[Scl=1] 0
    $S$=?[Cebpa=1] 0.999 99 激活基因
    $S$=?[Pu.1=1] 0.999 99
    $S$=?[cJun=1] 0.25 变化基因
    $S$=?[EgrNab=1] 0.25
    $S$=?[Gfi1=1] 0.75
    公式 基因在特定时刻激活概率 基因种类
    $T=1$ $T=2$ $T=100$
    $P$=?$[F[T, T]$Gata2=1] 0.666 6 0.222 2 3.72E-44 抑制基因
    $R$=?$[F[T, T]$Gata1=1] 0 0 0
    $R$=?$[F[T, T]$Fog1=1] 0 0 0
    $R$=?$[F[T, T]$EKLF=1] 0 0 0
    $R$=?$[F[T, T]$Fli1=1] 0 0 0
    $R$=?$[F[T, T]$Scl=1] 0 0 0
    $R$=?$[F[T, T]$Cebpa=1] 1 1 1 激活基因
    $R$=?$[F[T, T]$Pu.1=1] 1 1 1
    下载: 导出CSV

    表  4  基因Gata1的过度表达扰动结果

    Tab.  4  The result of gene Gata1's over expression

    公式基因长期激活概率
    无基因扰动结果 加入Gata1过度表达扰动结果
    $S$=?[Gebpa=1] 0.999 99 0.876
    $S$=?[cJun=1] 0.25 0.342 9
    $S$=?[EgrNab=1] 0.25 0.342 9
    $S$=?[Gfi1=1] 0.749 9 0.657
    公式 基因在某时刻前激活时间统计$T=100$
    无基因扰动结果 加入Gata1过度表达扰动结果
    $R${"Gata1active"}=?[$C<=T$] 0 2.098
    $R${"Fog1active"}=?[$C<=T$] 0 1.12
    $R${"EKLFactive"}=?$[C<=T]$ 0 1.343
    $R${"Gebpaactive"}=?$[C<=T]$ 100 88.387
    $R${"cJunactive"}=?$[C<=T]$ 25.277 7 33.693
    $R${"EgrNabactive"}=?$[C<=T]$ 24.361 1 32.394
    $R${"Gfi1active"}=?$[C<=T]$ 73.694 4 65.034
    下载: 导出CSV
  • [1] KWIATKOWSKA M, NORMAN G, PARKER D. PRISM:Probabilistic symbolic model checker[C]//International Conference on Computer Performance Evaluation. Berlin:Springer, 2002:200-204.
    [2] KAUFFMAN S. Homeostasis and differentiation in random genetic control networks[J]. Nature, 1969, 5215(224):177-178. http://or.nsfc.gov.cn/bitstream/00001903-5/129738/1/1000006894828.pdf
    [3] TRAIRATPHISAN P, MIZERA A, PANG J, et al. Recent development and biomedical applications of probabilistic Boolean networks[J]. Cell Communication and Signaling, 2013, 11:46. DOI: 10.1186/1478-811X-11-46.
    [4] AKUTSU T, MELKMAN A A, TAMURA T, et al. Determining a singleton attractor of a Boolean network with nested canalyzing functions[J]. Journal of Computational Biology, 2011, 18(10):1275-1290. doi:  10.1089/cmb.2010.0281
    [5] HUANG S. Gene expression profiling, genetic networks, and cellular states:An integrating concept for tumorigenesis and drug discovery[J]. Journal of Molecular Medicine, 1999, 77(6):469-480. doi:  10.1007/s001099900023
    [6] HUANG S. Genomics, complexity and drug discovery:Insights from Boolean network models of cellular regulation[J]. Pharmacogenomics, 2001, 2(3):203-222. doi:  10.1517/14622416.2.3.203
    [7] DROSSEL B, MIHALJEV T, GREIL F. Number and length of attractors in a critical Kauffman model with connectivity one[J]. Physical Review Letters, 2005, 94(8):088701. DOI: 10.1103/PhysRevLett.94.088701.
    [8] KAUFFMAN S A. The origins of order:Self-organization and selection in evolution[J]. Journal of Evolutionary Biology, 1992, 13(1):133-144.
    [9] SAMUELSSON B, TROEIN C. Superpolynomial growth in the number of attractors in Kauffman networks[J]. Physical Review Letters, 2003, 90(9):098701. DOI: 10.1103/PhysRevLett.90.098701.
    [10] TAMURA T, AKUTSU T. An O(1.787n)-time algorithm for detecting a singleton attractor in a Boolean network consisting of AND/OR nodes[C]//Fundamentals of Computation Theory, 16th International Symposium, FCT 2007, Proceedings. 2007:494-505.
    [11] ZHENG Q B, SHEN L Z, SHANG X Q, et al. Detecting small attractors of large Boolean networks by functionreduction-based strategy[J]. IET Systems Biology, 2016, 10(2):49-56. doi:  10.1049/iet-syb.2015.0027
    [12] HE Q B, XIA Z L, LIN B. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks[J]. Journal of Theoretical Biology, 2016, 408:137-144. doi:  10.1016/j.jtbi.2016.08.006
    [13] MEYN S P, TWEEDIE R L. Markov Chains and Stochastic Stability[M]. Berlin:Springer Science & Business Media, 2012.
    [14] HOSOYA K, TOMI M, OHTSUKI S, et al. Enhancement of L-cystine transport activity and its relation to xCT gene induction at the blood-brain barrier by diethyl maleate treatment[J]. The Journal of Pharmacology and Experimental Therapeutics, 2002, 302(1):225-231. doi:  10.1124/jpet.302.1.225
    [15] LI G, ROSS K E, ARIGHI C N, et al. MiRTex:A text mining system for miRNA-gene relation extraction[J]. PLOS Computational Biology, 2015, 11(9):e1004391. DOI: 10.1371/journal.pcbi.1004391.
    [16] 朱祥, 张云秋, 冯佳.基于生物医学文本挖掘工具的白血病和基因关系研究[J].中华医学图书情报杂志, 2015, 24(10):28-32. doi:  10.3969/j.issn.1671-3982.2015.10.007
    [17] HOWARD R A. Dynamic Probabilistic Systems[M]. New York:Dover Publicatinos Inc, 2007.
    [18] KWIATKOWSKA M, NORMAN G, PARKER D. Advances and challenges of probabilistic model checking[C]//Communication, Control, and Computing. IEEE, 2010:1691-1698.
    [19] LIANG S D, FUHRMAN S, SOMOGYI R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures[J]. Pacific Symposium on Biocomputing, 1998(3):18-29. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.5380
    [20] 郑启奔. 布尔网络吸引子确定算法研究[D]. 浙江温州: 温州大学, 2015.
    [21] TAMURA T, AKUTSU T. Detecting a singleton attractor in a Boolean network utilizing SAT algorithms[J]. Ieice Trans Fundamentals, 2009, 92(2):493-501. https://www.researchgate.net/profile/Avraham_Melkman/publication/51109361_Determining_a_Singleton_Attractor_of_a_Boolean_Network_with_Nested_Canalyzing_Functions/links/546e086e0cf29806ec2e6eb8.pdf
    [22] KRUMSIEK J, MARR C, SCHROEDER T, et al. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network[J/OL]. PlOS One, (2011-08-10)[2016-08-21]. https://doi.org/10.1371/journal.pone.0022649.
    [23] ZHANG S Q, HAYASHIDA M, AKUTSU T, et al. Algorithms for finding small attractors in Boolean networks[J]. Eurasip Journal on Bioinformatics and Systems Biology, 2007:20180. DOI: 10.1155/2007/20180.
    [24] LEE W P, HSIAO Y T. An adaptive GA-PSO approach with gene clustering to infer S-system models of gene regulatory networks[J]. Computer Journal, 2011, 54(9):1449-1464. doi:  10.1093/comjnl/bxr038
    [25] SHLYKOVA I, PONOSOV A. Singular perturbation analysis and gene regulatory networks with delay[J]. Nonlinear Analysis:Theory Methods & Applications, 2010, 72(9/10):3786-3812.
    [26] NICHOLSON C, GOODWIN L, CLARK C. Variable neighborhood search for reverse engineering of gene regulatory networks[J]. Journal of Biomedical Informatics, 2017, 65:120-131. doi:  10.1016/j.jbi.2016.11.010
    [27] FISHER J, KÖKSAL A S, PITERMAN N, et al. Synthesising executable gene regulatory networks from singlecell gene expression data[C]//International Conference on Computer Aided Verification. Springer International Publishing, 2015:544-560.
    [28] ORKIN S H, ZON L I. Hematopoiesis:an evolving paradigm for stem cell biology[J]. Cell, 2008, 132(4):631-644. doi:  10.1016/j.cell.2008.01.025
    [29] KARSUNKY H, ZENG H, SCHMIDT T, et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1[J]. Nature Genetics, 2002, 30(3):295-300. doi:  10.1038/ng831
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  56
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-09
  • 刊出日期:  2018-01-25

目录

    /

    返回文章
    返回