中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维过渡金属硫化物中Rashba自旋轨道耦合效应的电场调控研究

姚群芳 蔡佳 龚士静

姚群芳, 蔡佳, 龚士静. 二维过渡金属硫化物中Rashba自旋轨道耦合效应的电场调控研究[J]. 华东师范大学学报(自然科学版), 2018, (2): 101-108. doi: 10.3969/j.issn.1000-5641.2018.02.010
引用本文: 姚群芳, 蔡佳, 龚士静. 二维过渡金属硫化物中Rashba自旋轨道耦合效应的电场调控研究[J]. 华东师范大学学报(自然科学版), 2018, (2): 101-108. doi: 10.3969/j.issn.1000-5641.2018.02.010
YAO Qun-fang, CAI Jia, GONG Shi-jing. Electrical manipulation of Rashba spin-orbit coupling in the two-dimensional transition metal dichalcogenide[J]. Journal of East China Normal University (Natural Sciences), 2018, (2): 101-108. doi: 10.3969/j.issn.1000-5641.2018.02.010
Citation: YAO Qun-fang, CAI Jia, GONG Shi-jing. Electrical manipulation of Rashba spin-orbit coupling in the two-dimensional transition metal dichalcogenide[J]. Journal of East China Normal University (Natural Sciences), 2018, (2): 101-108. doi: 10.3969/j.issn.1000-5641.2018.02.010

二维过渡金属硫化物中Rashba自旋轨道耦合效应的电场调控研究

doi: 10.3969/j.issn.1000-5641.2018.02.010
基金项目: 

上海市自然科学基金 14ZR1412700

国家自然科学基金 61774059

详细信息
    作者简介:

    姚群芳, 女, 硕士研究生, 研究方向为自旋电子学.E-mail:qfyao1175@163.com

    通讯作者:

    龚士静, 女, 副研究员, 硕士生导师, 研究方向为自旋电子学.E-mail:sjgong@ee.ecnu.edu.cn

  • 中图分类号: O411.3

Electrical manipulation of Rashba spin-orbit coupling in the two-dimensional transition metal dichalcogenide

  • 摘要: 本文采用基于密度泛函理论的第一性原理计算方法,对6种二维过渡金属硫化物MX2M=Mo,W;X=S,Se,Te)中的Rashba自旋轨道耦合效应进行了系统研究.对6种MX2材料施加垂直方向电场,发现阴离子X对于电场诱导的Rashba自旋轨道耦合效应起主要作用:X原子序数越大,电场诱导的Rashba劈裂也越大;阳离子M被阴离子X覆盖,对电场诱导的Rashba自旋劈裂影响较弱.因此,6种MX2单层的Rashba自旋劈裂大小依次为:WTe2 > MoTe2 > WSe2 > MoSe2 > WS2 > MoS2.施加电场后,从布里渊区中心Γ点到布里渊区边界K/K'点,自旋方向二维平面内转向垂直方向,并且随着电场的增加,面内自旋成分逐渐增加.
  • 图  1  (a)、(b)二维$MX_{2}$结构的侧视图和俯视图, 其中蓝色球表示过渡金属元素$M$(Mo, W), 橙色球表示硫族元素$X$(S, Se, Te); (c)二维$MX_{2}$的第一布里渊区示意图, 其中$\overrightarrow{b} _1 $和$\overrightarrow{b} _2 $为倒格子基矢; (d)自旋简并的能带示意图; (e) Rashba自旋劈裂能带示意图

    Fig.  1  (a) Side view and (b) top view of the $MX_{2}$ monolayer structure, with the blue and the orange ball representing transition metals and chalcogenides, respectively; (c) The first Brillouin zone of the $MX_{2}$ monolayer with the reciprocal lattice vector $\overrightarrow{b} _1 $ and $\overrightarrow{b} _2 $; Schematic band structure for (d) spin degeneracy and (e) Rashba splitting

    图  2  单层WTe$_{2}$能带结构图

    Fig.  2  Band structures of the WTe$_{2}$ monolayer

    图  3  (a)-(c)外加电场$E_\text{ext}$=0 V/Å, 0.1 V/Å, 0.8 V/Å时, 单层WTe$_{2}$价带顶能带中的自旋分布图

    Fig.  3  (a)-(c) Distribution of the spin polarization of the WTe$_{2}$ monolayer in the highest valence band under the external electric fields $E_\text{ext}$=0 V/Å, 0.1 V/Å, 0.8 V/Å, respectively

    图  4  (a)-(c)单层WS$_{2}$、WSe$_{2}$、WTe$_{2}$分别在外加电场$E_\text{ext}$=0 V/Å, 0.2V/Å, 0.4 V/Å, 0.8 V/Å时, $\varGamma $点附近能带结构图

    Fig.  4  (a)-(c) Band structure of the WS$_{2}$, WSe$_{2}$ and WTe$_{2}$ monolayers under the external electric fields $E_\text{ext}$=0 V/Å, 0.2V/Å, 0.4 V/Å, 0.8 V/Å, respectively

    图  5  Rashba自旋轨道耦合参数$\alpha _{\text R}$随电场的变化

    Fig.  5  Dependence of Rashba parameter $\alpha _{\text R}$ on the external electric fields

  • [1] WINKLER R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[M]. Berlin:Springer, 2003.
    [2] DATTA S, DAS B. Electronic analog of the electro-optic modulator[J]. Appl Phys Lett, 1990, 56(7):665-667. doi:  10.1063/1.102730
    [3] MANCHON A, KOO H C, NITTA J, et al. New perspectives for Rashba spin-orbit coupling[J]. Nat Mater, 2015, 14(9):871-882. doi:  10.1038/nmat4360
    [4] CHUANG P, HO S-C, SMITH L W, et al. All-electric all-semiconductor spin field-effect transistors[J]. Nat Nanotechnol, 2015, 10(1):35-39. doi:  10.1038/nnano.2014.296
    [5] NITTA J, AKAZAKI T, TAKAYANAGI H, et al. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure[J]. Phys Rev Lett, 1997, 78(7):1335-1338. doi:  10.1103/PhysRevLett.78.1335
    [6] STEIN D, KLITZING K V, WEIMANN G. Electron spin resonance on GaAs-AlxGa1-xAs hetero structures[J]. Phys Rev Lett, 1983, 51(2):130-133. doi:  10.1103/PhysRevLett.51.130
    [7] LASHELL S, MCDOUGALL B A, JENSEN E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy[J]. Phys Rev Lett, 1996, 77(16):3419-3422. doi:  10.1103/PhysRevLett.77.3419
    [8] KOROTEEV Y M, BIHLMAYER G, GAYONE J E, et al. Strong spin-orbit splitting on Bi surfaces[J]. Phys Rev Lett, 2004, 93(4):046403. doi:  10.1103/PhysRevLett.93.046403
    [9] KRUPIN O, BIHLMAYER G, STARKE K, et al. Rashba effect at magnetic metal surfaces[J]. Phys Rev B, 2005, 71(20):201403. doi:  10.1103/PhysRevB.71.201403
    [10] AST C R, HENK J, ERNST A, et al. Giant spin splitting through surface alloying[J]. Phys Rev Lett, 2007, 98(18):186807. doi:  10.1103/PhysRevLett.98.186807
    [11] SAKAMOTO K, KAKUTA H, SUGAWARA K, et al. Peculiar Rashba splitting originating from the twodimensional symmetry of the surface[J]. Phys Rev Lett, 2009, 103(15):156801. doi:  10.1103/PhysRevLett.103.156801
    [12] GIERZ I, SUZUKI T, FRANTZESKAKIS E, et al. Silicon surface with giant spin splitting[J]. Phys Rev Lett, 2009, 103(4):046803. doi:  10.1103/PhysRevLett.103.046803
    [13] ISHIZAKA K, BAHRAMY M S, MURAKAWA H, et al. Giant Rashba-type spin splitting in bulk BiTeI[J]. Nat Mater, 2011, 10(7):521-526. doi:  10.1038/nmat3051
    [14] BAHRAMY M S, ARITA R, NAGAOSA N. Origin of giant bulk Rashba splitting:Application to BiTeI[J]. Phys Rev B, 2011, 84(4):041202. http://adsabs.harvard.edu/abs/2011PhRvB..84d1202B
    [15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. doi:  10.1126/science.1102896
    [16] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308-1308. doi:  10.1126/science.1156965
    [17] PACIL D, MEYER J C, GIRIT Ç O et al. The two-dimensional phase of boron nitride:Few-atö mic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13):133107. doi:  10.1063/1.2903702
    [18] VOGT P, DE PADOVA P, QUARESIMA C, et al. Silicene:Compelling experimental evidence for graphenelike two-dimensional silicon[J]. Phys Rev Lett, 2012, 108(15):155501. doi:  10.1103/PhysRevLett.108.155501
    [19] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11):699-712. doi:  10.1038/nnano.2012.193
    [20] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24):245213. http://www.researchgate.net/publication/51888309_How_does_quantum_confinement_influence_the_electronic_structure_oftransition_metal_sulfides_TmS2
    [21] CONLEY H J, WANG B, ZIEGLER J I, et al. Bandgap Engineering of Strained Monolayer and Bilayer MoS2[J]. Nano Lett, 2013, 13(8):3626-3630. http://www.ncbi.nlm.nih.gov/pubmed/23819588
    [22] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nat Photonics, 2016, 10(4):216-226. doi:  10.1038/nphoton.2015.282
    [23] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3):147-150. doi:  10.1038/nnano.2010.279
    [24] EDA G, MAIER S A. Two-dimensional crystals:Managing light for optoelectronics[J]. ACS Nano, 2013, 7(7):5660-5665. doi:  10.1021/nn403159y
    [25] XIAO D, LIU G B, FENG W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides[J]. Phys Rev Lett, 2012, 108(19):196802. doi:  10.1103/PhysRevLett.108.196802
    [26] ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7:490-493. doi:  10.1038/nnano.2012.95
    [27] CHENG Y C, ZHU Z Y, TAHIR M, et al. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers[J]. Europhys Lett, 2013, 102(5):57001. doi:  10.1209/0295-5075/102/57001
    [28] KRESSE G, JOUBERT D. From utrasoft pseudopotentials to the projector augmentedwave method[J]. Phys Rev B, 1999, 59(3):1758-1775. doi:  10.1103/PhysRevB.59.1758
    [29] GONG S J, CAI J, YAO Q F, et al. Orbital control of Rashba spin orbit coupling in noble metal surfaces[J]. J Appl Phys, 2016, 119(12):125310. doi:  10.1063/1.4945320
    [30] GONG S J, DUAN C G, ZHU Y, et al. Controlling Rashba spin splitting in Au (111) surface states through electric field[J]. Phys Rev B, 2013, 87(3):035403. https://www.researchgate.net/publication/258014859_Controlling_Rashba_spin_splitting_in_Au111_surface_states_through_electric_field
    [31] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. doi:  10.1103/PhysRevLett.77.3865
    [32] SANNA S, H LSCHER R, SCHMIDT W G. Temperature dependent LiNbO3(0001):Surface reconstruction and surface charge[J]. Appl Surf Sci, 2014, 301:70-78. doi:  10.1016/j.apsusc.2014.01.104
    [33] VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nat Mater, 2013, 12(6):554-561. doi:  10.1038/nmat3633
    [34] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2:A new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13):136805. doi:  10.1103/PhysRevLett.105.136805
  • 加载中
图(5)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  82
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回