中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光激发磁性薄膜产生相干声学声子的研究

颜佳琪 李巍 楼柿涛 张晓磊

颜佳琪, 李巍, 楼柿涛, 张晓磊. 飞秒激光激发磁性薄膜产生相干声学声子的研究[J]. 华东师范大学学报(自然科学版), 2018, (2): 109-114. doi: 10.3969/j.issn.1000-5641.2018.02.011
引用本文: 颜佳琪, 李巍, 楼柿涛, 张晓磊. 飞秒激光激发磁性薄膜产生相干声学声子的研究[J]. 华东师范大学学报(自然科学版), 2018, (2): 109-114. doi: 10.3969/j.issn.1000-5641.2018.02.011
YAN Jia-qi, LI Wei, LOU Shi-tao, ZHANG Xiao-lei. Coherent acoustic phonon inmagnetic thin films excited by femtosecond laser[J]. Journal of East China Normal University (Natural Sciences), 2018, (2): 109-114. doi: 10.3969/j.issn.1000-5641.2018.02.011
Citation: YAN Jia-qi, LI Wei, LOU Shi-tao, ZHANG Xiao-lei. Coherent acoustic phonon inmagnetic thin films excited by femtosecond laser[J]. Journal of East China Normal University (Natural Sciences), 2018, (2): 109-114. doi: 10.3969/j.issn.1000-5641.2018.02.011

飞秒激光激发磁性薄膜产生相干声学声子的研究

doi: 10.3969/j.issn.1000-5641.2018.02.011
详细信息
    作者简介:

    颜佳琪, 女, 硕士研究生, 研究方向为自旋电子学.E-mail:642843538@qq.com

    通讯作者:

    楼柿涛, 男, 副研究员, 硕士生导师, 研究方向为自旋电子学.E-mail:stlou@admin.ecnu.edu.cn

  • 中图分类号: O484

Coherent acoustic phonon inmagnetic thin films excited by femtosecond laser

  • 摘要: 飞秒激光脉冲和磁性薄膜中的MnIr层相互作用激发了初始相位为90°,在薄膜中传播速度为4 300 m/s的相干声学声子.该声学声子的振动频率与激光能量密度无关,与该磁性薄膜总厚度成反比.相干声学声子的产生机理可能为飞秒激光激发磁性薄膜的电子,使电子温度急剧上升,随后由于激光吸收而强度减弱形成了一个瞬间的随深度增加而减小的电子温度梯度,使晶格在深度方向相干振荡,即激发了声学声子.另外,外磁场的变化对声学声子的频率的影响在实验误差范围内,说明磁相互作用和晶格中的电相互作用相比是非常弱的.
  • 图  1  泵浦-探测实验光路示意图

    Fig.  1  Light path diagram of pump-probe measurement

    图  2  不同泵浦光能量下反射率变化量随延迟时间的变化

    Fig.  2  Time-resolved reflectivity changes observed in two pump fluence

    图  3  不同MnIr厚度的样品反射率变化量随延迟时间的变化

    Fig.  3  Time-resolved reflectivity changes observed in different thickness of MnIr layer

    图  4  声子的频率随MnIr厚度的变化图

    Fig.  4  The frequency of phonon as a fuction of the thickness of MnIr

    图  5  不同磁场下样品反射率变化量随延迟时间的变化

    Fig.  5  Time-resolved reflectivity changes observed in different applied magnetic fields

    图  6  声学声子频率随外磁场的变化曲线

    Fig.  6  The frequency of phonon as a fuction of theapplied magnetic fields

    表  1  溅射条件

    Tab.  1  Sputtering conditions

    材料直流功率/W溅射气压/mTorr溅射速率/(Å$\cdot $s$^{-1})$
    Ta608.00.519
    Co605.00.284
    CoFeB805.00.5
    Pt405.00.5
    MnIr806.00.6
    下载: 导出CSV
  • [1] ROSSIGNOL C, RAMPNOUX J M, PERTON M, et al. Generation and detection of shear acoustic waves in metal submicrometric films with ultrashort laser pulses[J]. Physical Review Letters, 2005, 94:166106. doi:  10.1103/PhysRevLett.94.166106
    [2] PARK H, WANG X, NIE S, et al. Mechanism of coherent acoustic phonon generation under nonequilibrium conditions[J]. Physical Review B, 2005, 72:100301. doi:  10.1103/PhysRevB.72.100301
    [3] WU S, GEISER P, JUN J, et al. Long-lived, coherent acoustic phonon oscillations in GaN single crystals[J]. Applied Physics Letters, 2006, 88:041917. doi:  10.1063/1.2168246
    [4] ROSSIGNOL C, PERRIN B. Interferometric detection in picoseconds ultrasonics for nondestructive testing of submicrometric opaque multilayered samples:TiN/AlCu/TiN/Ti/Si[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(8):1354-1359. doi:  10.1109/TUFFC.2005.1509794
    [5] WANG D, CROSS A, GUARINO G, et al. Time-resolved dynamics of coherent acoustic phonons in CdMnTe diluted-magneticsingle crystals[J]. Applied Physics Letters, 2007, 90:211905. doi:  10.1063/1.2738368
    [6] LIM D, AVERITT R D, DEMSAR J, et al. Coherent acoustic phonons in hexagonal manganite LuMnO3[J]. Applied Physics Letters, 2003, 83(23):4800-4802. doi:  10.1063/1.1630847
    [7] MILLER J K, QI J, XU Y, et al. Near-bandgap wavelength dependence of long-lived traveling coherent longitudinal acousticphonons in GaSb-GaAsheterostructures[J]. Physical Review B, 2006, 74:113313. doi:  10.1103/PhysRevB.74.113313
    [8] WEN Y C, CHOU L C, LIN H H, et al. Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects[J]. Applied Physics Letters, 2007, 90:172102. doi:  10.1063/1.2731441
    [9] THOMSEN C, STRAIT J, VARDENY Z, et al. Coherent phonon generation and detection by picosecond light pulses[J]. Physical Review Letters, 1984, 53(10):989-992. doi:  10.1103/PhysRevLett.53.989
    [10] THOMSEN C, GRAHN H T, MARISETAL H J, et al. Surface generation and detection of phonons by picosecond light pulses[J]. Physical Review B, 1986, 34(6):4129-4138. doi:  10.1103/PhysRevB.34.4129
    [11] OGI H, FUJⅡ M, NAKAMURA N, et al. Resonance acoustic-phonon spectroscopy for studying elasticity of ultrathin films[J]. Applied Physics Letters, 2007, 90:191906. doi:  10.1063/1.2737819
    [12] NAKAMURA N, URANISHI A, WAKITA M, et al. Elastic stiffness of L10 FePt thin film studied by picosecond ultrasonics[J]. Applied Physics Letters, 2011, 98:101911. doi:  10.1063/1.3562031
    [13] HASE M, ISHIOKA K, DEMSAR J, et al. Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals[J]. Physical Review B, 2005, 71(18):184301. doi:  10.1103/PhysRevB.71.184301
    [14] ZEIGER H J, VIDAL J, CHENG T K, et al. Theory for displacive excitation of coherent phonons[J]. Physical Review B, 1992, 45(2):768-778. doi:  10.1103/PhysRevB.45.768
    [15] KUZNETSOV A V, STANTON C J. Theory of coherent phonon oscillations in semiconductors[J]. Physical Review Letters, 1994, 73(24):3243-3246. doi:  10.1103/PhysRevLett.73.3243
    [16] 张郑兵, 马小柏, 金钻明, 等. Fe/Si薄膜中相干声学声子的光激发研究[J].物理学报, 2012, 61(9):097401. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_wlxb201209061
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  64
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-19
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回