中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁偶极作用对铁基纳米晶条带LDGMI效应的影响

苏亚攀 潘海林 赵振杰 袁萌平

苏亚攀, 潘海林, 赵振杰, 袁萌平. 磁偶极作用对铁基纳米晶条带LDGMI效应的影响[J]. 华东师范大学学报(自然科学版), 2018, (3): 129-135, 156. doi: 10.3969/j.issn.1000-5641.2018.03.014
引用本文: 苏亚攀, 潘海林, 赵振杰, 袁萌平. 磁偶极作用对铁基纳米晶条带LDGMI效应的影响[J]. 华东师范大学学报(自然科学版), 2018, (3): 129-135, 156. doi: 10.3969/j.issn.1000-5641.2018.03.014
SU Ya-pan, PAN Hai-lin, ZHAO Zhen-jie, YUAN Meng-ping. Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons[J]. Journal of East China Normal University (Natural Sciences), 2018, (3): 129-135, 156. doi: 10.3969/j.issn.1000-5641.2018.03.014
Citation: SU Ya-pan, PAN Hai-lin, ZHAO Zhen-jie, YUAN Meng-ping. Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons[J]. Journal of East China Normal University (Natural Sciences), 2018, (3): 129-135, 156. doi: 10.3969/j.issn.1000-5641.2018.03.014

磁偶极作用对铁基纳米晶条带LDGMI效应的影响

doi: 10.3969/j.issn.1000-5641.2018.03.014
基金项目: 

国家自然科学基金 11574084

国家自然科学基金 51572086

详细信息
    作者简介:

    苏亚攀, 男, 硕士研究生, 研究方向为磁性材料.E-mail:ypsu_xc@163.com

    通讯作者:

    赵振杰, 男, 教授, 博士生导师, 研究方向为磁性材料与器件.E-mail:zjzhao@phy.ecnu.edu.cn

  • 中图分类号: O157.5

Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons

  • 摘要: 研究了多片Fe73.5Cu1Nb3Si13.5B9纳米晶条带的磁滞回线、纵向巨磁阻抗(Longitudinal Driven Giant Magneto-Impedance,LDGMI)效应及阻抗相位角的变化规律.研究发现,样品各向异性场随纳米晶条带片数线性增加,LDGMI曲线的"平台"宽度也线性展宽,这是相邻纳米晶条带的磁偶极相互作用导致的.同时,发现驱动场大小、频率对样品LDGMI曲线的"平台"宽度有调制作用,其肩宽场随驱动场频率的增加而增大以及随驱动场增强而减小.因此,本工作对多磁芯LDGMI器件的研制具有重要参考价值.
  • 图  1  (a) 多片铁基纳米晶条带的磁滞回线; (b)铁基纳米晶条带的各向异性场与片数关系

    Fig.  1  (a) The hysteresis loops of Fe-based nanocrystalline ribbons; (b) Dependence of the anisotropy field with number of Fe-based nanocrystalline ribbons

    图  2  (a) 多片纳米晶条带的LDGMI效应的频谱; (b)铁基纳米晶条带的特征频率线性与片数的关系

    Fig.  2  (a) The LDGMI spectrum of nanocrystalline ribbons; (b) Dependence of the characteristic frequency with number of Fe-based nanocrystalline ribbons

    图  3  (a) 多片纳米晶条带在频率为10 kHz时的LDGMI曲线; (b)多片纳米晶条带在频率为10 kHz时的相位曲线

    Fig.  3  (a) The LDGMI curves of nanocrystalline ribbons at a frequency of 10 kHz; (b) The phase curves of nanocrystalline ribbons at a frequency of 10 kHz

    图  4  样品各向异性场和肩宽场在不同频率下的对比图

    Fig.  4  The comparison spectrum of the anisotropic field and broad field of the sample under different driven frequencies

    图  5  不同驱动电流下单片铁基纳米晶条带的LDGMI曲线

    Fig.  5  The curves of the LDGMI effect of the single Fe-based nanocrystalline ribbon under different driven currents

    图  6  铁基纳米晶条带肩宽场与驱动场在不同频率下的关系图

    Fig.  6  Dependence of the broad field of Fe-based nanocrystalline ribbons with the driven field under different driven frequencies

  • [1] TAN K J, TAKASHI K, KIYOSHI Y, et al. Detection of high frequency magnetic fields by a GMI probe[J]. IEEE Transaction on Magnetics, 2006, 42(10):3329-3331. doi:  10.1109/TMAG.2006.879627
    [2] BLANC-BEGUIN F, NABILY S, GIERALTOWSKI J, et al. Cytotoxicity and GMI biosensor detection of maghemite nanoparticles internalized into cells[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(3):192-197. doi:  10.1016/j.jmmm.2008.08.104
    [3] SOO S Y, PRATAP K, DONG Y K, et al. Magnetic sensor system using asymmetric giant magneto-impedance head[J]. IEEE Transaction on Magnetics, 2009, 45(6):2727-2729. doi:  10.1109/TMAG.2009.2020538
    [4] 杨介信, 杨燮龙, 陈国, 等.一种新型的纵向驱动巨磁阻抗效应[J].科学通报, 1998, 43(10):1051-1053. doi:  10.3321/j.issn:0023-074X.1998.10.008
    [5] ZHAO W, BU X Z, YU G L, et al. Feedback-type giant magneto-impedance sensor based on longitudinal excitation[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(19):3073-3077. doi:  10.1016/j.jmmm.2012.05.004
    [6] WU Z M, ZHAO Z J, LIU L P, et al. A new frequency-modulation-type MI sensor[J]. IEEE Transaction on Magnetics, 2005, 41(10):3694-3696. doi:  10.1109/TMAG.2005.854808
    [7] YU G L, BU X Z, XIANG C, et al. Design of a GMI magnetic sensor based on longitudinal excitation[J]. Sensor Actuators A-Physical, 2010, 161(1/2):72-77. https://www.sciencedirect.com/science/article/pii/S0924424710002323
    [8] YU G L, BU X Z, YANG B, et al. Differential-type GMI magnetic sensor based on longitudinal excitation[J]. IEEE Sensors Journal, 2011, 11(10):2273-2278. doi:  10.1109/JSEN.2011.2134084
    [9] MOHRI K, PANINA I V, UCHIYAMA T, et al. Sensitive and quick response macro-magnetic sensor utilizing magnetic impedance in Co-rich amorphous wire[J]. IEEE Transaction on Magnetics, 1995, 31(2):1266-1275. doi:  10.1109/20.364817
    [10] 杨燮龙, 杨介信, 陈国, 等. Fe基软磁纳米微晶磁致电阻抗效应的研究[J].科学通报, 1997, 42(3):257-259. http://www.oalib.com/paper/4283981
    [11] WANG Z C, GONG F F, YANG X L, et al. Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons[J]. Journal of Applied Physics, 2000, 87(9):4819-4821. doi:  10.1063/1.373170
    [12] PAL S K, MANIK N B, MITRA A. Dependence of frequency and amplitude of the ac current on the GMI properties of Co based amorphous wires[J]. Materials Science and Engineering, 2006, 415(1/2):195-201.
    [13] SAMPAIO L C, SINNECKER E H C P, CERNICCHIARO G R C, et al. Magnetic microwires as macrospins in a long-range dipole-dipole interaction[J]. Physical Review B, 2000, 61(13):8976-8983. doi:  10.1103/PhysRevB.61.8976
    [14] ZHANG S L, CHAI Y S, FANG D Q, et al. Giant magneto-impedance effect of two paralleled amorphous microwires[J]. Rare Metals, 2016, 35(4):344-348. doi:  10.1007/s12598-013-0212-0
    [15] ASLIBEIKI B, KAMELI P, SALAMATI H. The effect of dipole-dipole interactions on coercivity, anisotropy constant and blocking temperature of MnFe2O4 nanoparticles[J/OL]. Journal of Applied Physics, 2016, 119(6): 063901(2016-02-14)[2017-02-01]. http://dx.doi.org/10.1063/1.4941388.
    [16] FAN J, WU J, NING N, et al. Magnetic dynamic interaction in amorphous micro wire array[J]. IEEE Transaction on Magnetics, 2010, 46(6):2431-2434. doi:  10.1109/TMAG.2010.2044378
    [17] PHAN M H, YU S C, CHUNG J S, et al. Magnetic characteristics and frequency dependence of permeability in Fe-B-N thin films[J]. Journal of Applied Physics, 2003, 93(12):9913-9915. doi:  10.1063/1.1579551
    [18] PHAN M H, PENG H X, YU S C, et al. Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires[J]. Journal of Magnetism and Magnetic Materials, 2007, 316(2):e253-e256. doi:  10.1016/j.jmmm.2007.02.112
    [19] YANG X L, YANG J X, CHEN G, et al. Magneto-impedance effect in field and stress-annealed Fe-based nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 1997, 175(3):285-289. doi:  10.1016/S0304-8853(97)00210-2
    [20] RODIONOVA V, KUDINOV N, ZHUKOV A, et al. Interaction of bistable glass-coated microwires in different positional relationship[J]. Physica B:Condensed Matter, 2012, 407(9):1438-1441. doi:  10.1016/j.physb.2011.09.043
    [21] 何济洲, 缪贵玲.两个磁偶极子间的相互作用[J].南昌大学学报, 1996, 18(3):96-98. http://www.docin.com/p-723470992.html
    [22] 易建宏, 李丽娅, 彭元东.微波场作用下非晶合金Fe73.5Cu1Nb3Si13.5B9的纳米晶化[J].材料研究学报, 2007, 21(6):632-636.
    [23] 王宗篪, 杨燮龙, 宫峰飞, 等.纵向驱动巨磁阻抗效应的相位特性[J].华东师范大学学报(自然科学版), 2000(2):49-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hdsz200002007&dbname=CJFD&dbcode=CJFQ
    [24] AMALOUA F, GIJS M A M. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons[J]. Applied Physics Letters, 2002, 81(9):1654-1656. doi:  10.1063/1.1499769
    [25] 林宏, 袁望治, 赵振杰. FeCuNbSiB多层膜的磁特性和巨磁阻抗效应[J].功能材料与器件学报, 2007, 13(6):666-670. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1073196
  • 加载中
图(6)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  74
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回