中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内源硫影响污染河湖磷营养盐环境行为的研究进展

许怡雯 韩静 何岩 黄民生

许怡雯, 韩静, 何岩, 黄民生. 内源硫影响污染河湖磷营养盐环境行为的研究进展[J]. 华东师范大学学报(自然科学版), 2018, (6): 74-80. doi: 10.3969/j.issn.1000-5641.2018.06.009
引用本文: 许怡雯, 韩静, 何岩, 黄民生. 内源硫影响污染河湖磷营养盐环境行为的研究进展[J]. 华东师范大学学报(自然科学版), 2018, (6): 74-80. doi: 10.3969/j.issn.1000-5641.2018.06.009
XU Yi-wen, HAN Jing, HE Yan, HUANG Min-sheng. A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes[J]. Journal of East China Normal University (Natural Sciences), 2018, (6): 74-80. doi: 10.3969/j.issn.1000-5641.2018.06.009
Citation: XU Yi-wen, HAN Jing, HE Yan, HUANG Min-sheng. A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes[J]. Journal of East China Normal University (Natural Sciences), 2018, (6): 74-80. doi: 10.3969/j.issn.1000-5641.2018.06.009

内源硫影响污染河湖磷营养盐环境行为的研究进展

doi: 10.3969/j.issn.1000-5641.2018.06.009
基金项目: 

国家自然科学基金 41877477

上海市自然科学基金 16ZR1408800

上海市科技创新行动计划 18DZ1203806

上海市浦江人才计划 16PJD023

详细信息
    作者简介:

    许怡雯, 女, 硕士研究生, 研究方向为河道治理与修复.E-mail:mgzc52bella@163.com

    通讯作者:

    何岩, 女, 副教授, 硕士生导师, 研究方向为水环境治理与修复.E-mail:yhe@des.ecnu.edu.cn

  • 中图分类号: X522

A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes

  • 摘要: 硫和磷都是生物地球化学循环中重要的生源要素,两者的环境行为和耦合机制共同影响着污染河湖内源污染的释放.本文总结了污染河湖沉积物中硫与磷的环境行为以及它们之间耦合机制的最新研究进展,指出硫驱动的磷释放进而造成的水体富营养化是污染河湖中值得重视的环境问题,并同时对硫循环与其他生物地球化学循环耦合过程的研究提出展望,以期为治理污染河湖中的内源污染提供借鉴.
  • 图  1  污染河湖中内源硫循环主要过程示意图

    Fig.  1  Schematic representation of S-transformation pathways during sulfur cycling at the sediment-overlying water interface

    图  2  污染河湖中内源硫与磷可能的耦合关系图

    Fig.  2  Possible coupling of endogenous sulfur and phosphorus in polluted rivers and lake

    表  1  内源硫与磷耦合关系的相关研究

    Tab.  1  Study on the coupling of endogenous sulfur and phosphorus

    生境研究区域 硫与磷的关系
    水库 A-ha reservoir[47] 将硫作为评价因子(Fe/S比)纳入沉积物释磷潜力评价体系
    湖泊 红枫湖[29] MSR与铁异化还原过程引起铁磷释放
    滇池[38] MSR促进的FeOOH的还原使铁磷释放
    太湖[39] MSR驱动有机磷的分解使磷释放
    Linsley Pond(热分层湖泊)[13] 硫光合细菌会阻碍间隙水中的磷向上覆水迁移
    河口 K. obovata forest[40] MSR引起铁磷释放
    人工湿地 Wetland mesocosms(低硫环境)[41] MSR仍可驱动有机磷矿化引起磷释放
    下载: 导出CSV
  • [1] 尹洪斌.太湖沉积物形态硫赋存及其与重金属和营养盐关系研究[D].南京: 中国科学院南京地理与湖泊研究所, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1615636
    [2] BALDWIN D S, MITCHELL A. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment[J]. Water Research, 2012, 46(4):965-974. doi:  10.1016/j.watres.2011.11.065
    [3] CARACO N F, COLE J J, LIKENS G E. Sulfate control of phosphorus availability in lakes:A test and re-evaluation of Hasler and Einsele's model[J]. Hydrobiologia, 1993, 253(1/2/3):275-280. doi:  10.1007/BF00050748
    [4] ROZAN T F, TAILLEFERT M, TROUWBORST R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnol Oceanogr, 2002, 47(5):1346-1354. doi:  10.4319/lo.2002.47.5.1346
    [5] 杨海全, 陈敬安, 刘文, 等.草海沉积物营养元素分布特征与控制因素[J].地球与环境, 2016, 44(3):297-303. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201603003
    [6] 张璐.胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D].山东青岛: 中国海洋大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10423-1014368346.htm
    [7] MYRBO A, SWAIN E B, ENGSTROM D R, et al. Sulfide generated by sulfate reduction is a primary controller of the occurrence of wild rice (Zizania palustris) in shallow aquatic ecosystems[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2736-2753[2018-05-13]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003787.
    [8] POLLMAN C D, SWAIN E B, BAEL D, et al. The evolution of sulfide in shallow aquatic ecosystem sediments-An analysis of the roles of sulfate, organic carbon, iron and feedback constraints using structural equation modeling[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2719-2735[2018-05-13]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003785.
    [9] STAGG C L, SCHOOLMASTER D R, KRAUSS K W, et al. Causal mechanisms of soil organic matter decomposition:Deconstructing salinity and flooding impacts in coastal wetlands[J]. Ecology, 2017, 98(8):2003-2018. doi:  10.1002/ecy.1890
    [10] JOHNSON N W, MITCHELL C P, ENGSTROM D R, et al. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland[J]. Environmental Science:Processes & Impacts, 2016, 18(6):725-734. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8edd811d83badd6758ea97da14dbba27
    [11] COLEMAN WASIK J K, ENGSTROM D R, MITCHELL C P J, et al. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(9):1697-1715. doi:  10.1002/2015JG002993
    [12] REN L, SONG X Y, JEPPESEN E, et al. Contrasting patterns of freshwater microbial metabolic potentials and functional gene interactions between an acidic mining lake and a weakly alkaline lake[J]. Limnology and Oceanography, 2018, 63:S354-S366. doi:  10.1002/lno.10744/full
    [13] WANG P, BENOIT G. Modeling the biogeochemical role of photosynthetic sulfur bacteria in phosphorus cycling in a managed eutrophic lake[J]. Ecological Modelling, 2017, 361:66-73. doi:  10.1016/j.ecolmodel.2017.05.016
    [14] ZHANG W, JIN X, LIU D, et al. Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients[J]. Environ Sci Pollut Res Int, 2017, 24(23):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00676bff08d64f061bb45b008eff7891
    [15] ZHU M X, HAO X C, SHI X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf[J]. Applied Geochemistry, 2012, 27(4):892-905. doi:  10.1016/j.apgeochem.2012.01.004
    [16] YU F, ZOU J, HUA Y, et al. Transformation of external sulphate and its effect on phosphorus mobilization in Lake Moshui, Wuhan, China[J]. Chemosphere, 2015(138):398-404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14f27ac3b5a2e4995486b3af42e3ca9e
    [17] 安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究[D].济南: 山东大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10422-2008192275.htm
    [18] 朱瑾灿, 吴雨琛, 尹洪斌.太湖蓝藻聚集区沉积物硫形态的时空变异特征[J].中国环境科学, 2017, 37(12):4690-4700. doi:  10.3969/j.issn.1000-6923.2017.12.035
    [19] 叶焰焰.罗源湾滨海湿地沉积物中还原性无机硫的分布特征及影响研究[D].武汉: 中国地质大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136469.htm
    [20] 段勋, 罗敏, 黄佳芳, 等.闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布[J].环境科学学报, 2017, 37(10):3780-3791. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201710020
    [21] JULIAN P, CHAMBERS R, RUSSELL T. Iron and pyritization in wetland soils of the Florida Coastal Everglades[J]. Estuaries and Coasts, 2017, 40(3):822-831. doi:  10.1007/s12237-016-0180-3
    [22] ZHU J, HE Y, ZHU Y S, et al. Biogeochemical sulfur cycling coupling with dissimilatory nitrate reduction processes in freshwater sediments[J]. Environmental Reviews, 2018, 26(2):121-132. doi:  10.1139/er-2017-0047
    [23] 孙韶玲, 盛彦清, 孙瑞川, 等.河流水体黑臭演化过程及恶臭硫化物的产生机制[J].环境科学与技术, 2018, 41(3):15-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FJKS201803004&dbname=CJFD&dbcode=CJFQ
    [24] BAO P, LI G X, SUN G X. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of the Total Environment, 2017, 613/614:398-408. http://www.ncbi.nlm.nih.gov/pubmed/28918271
    [25] ELLER G, KANEL L K, KRUGER M. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee[J]. Applied and Environmental Microbiology, 2005, 71(12):8925-8928. doi:  10.1128/AEM.71.12.8925-8928.2005
    [26] LOY A, DULLER S, BARANYI C, et al. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes[J]. Environmental Microbiology, 2010, 11(2):289-299. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2702494
    [27] 郭晨辉, 李和祥, 方芳, 等.钼锑抗分光光度法对黄河表层沉积物中磷的形态分布及其吸附-解吸特征研究[J].光谱学与光谱分析, 2018, 38(1):218-223. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GUAN201801047&dbname=CJFD&dbcode=CJFQ
    [28] ZHU J, HE Y, WANG J H, et al. Impact of aeration disturbances on endogenous phosphorus fractions and their algae growth potential from malodorous river sediment[J]. Environ Sci Pollut Res, 2017, 24:8062-8070. doi:  10.1007/s11356-017-8471-1
    [29] 王敬富, 陈敬安, 罗婧, 等.红枫湖沉积物内源磷释放通量估算方法的对比研究[J].地球与环境, 2018, 46(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201801001
    [30] DING S, YAN W, DAN W, et al. In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments[J]. Sci Rep, 2016, 6(1):24341. doi:  10.1038/srep24341
    [31] RYDIN E. Potentially mobile phosphorus in lake Erken sediment[J]. Water Research, 2000, 34(7):2037-2042. doi:  10.1016/S0043-1354(99)00375-9
    [32] JING L, LIU X, BAI S, et al. Effects of sediment dredging on internal phosphorus:A comparative field study focused on iron and phosphorus forms in sediments[J]. Ecological Engineering, 2015(82):267-271. http://www.sciencedirect.com/science/article/pii/S0925857415300070
    [33] HANSEL C M, LENTINI C J, TANG Y, et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments[J]. Isme Journal, 2015, 9(11):2400. doi:  10.1038/ismej.2015.50
    [34] CESBRON F, METZGER E, LAUNEAU P, et al. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods[J]. Environmental Science & Technology, 2014, 48(5):2816-2826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43cc2e059c155533e3fa1a6e93f45b1b
    [35] 杨宏伟, 杨小红, 韩明梅.黄河表层沉积物中磷形态分布与释放风险[J].环境化学, 2016, 35(2):403-410. http://d.old.wanfangdata.com.cn/Periodical/hjhx201602022
    [36] XIANG S, NIE F, WU D, et al. Nitrogen distribution and diffusive fluxes in sediment interstitial water of Poyang Lake[J]. Environmental Earth Sciences, 2015, 74(3):2609-2615. doi:  10.1007/s12665-015-4281-2
    [37] 杨斌, 王婷, 王坤, 等.一种改进的磷形态连续提取方法[J].环境科学与技术, 2017, 40(9):90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017111600006800
    [38] WANG J, CHEN J, DING S, et al.Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem:a case study in Hongfeng lake, Southwest China[J]. Environ Pollut, 2016, 219:258-265. http://www.sciencedirect.com/science/article/pii/S0269749116306947
    [39] HUANG L, FANG H, HE G, et al. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents[J]. Environ Pollut, 2016, 219:760-773. doi:  10.1016/j.envpol.2016.07.049
    [40] JIAN L, JUNYI Y, JINGCHUN L, et al. The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere[J]. Marine Pollution Bulletin, 2016, 114(2):733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=401896ef7bd29720407ff82a1b539404
    [41] MYRBO A, SWAIN E B, JOHNSON N W, et al. Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2769-2785[2018-05-15]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003788.
    [42] GEURTS J J M, SARNEEL J M, WILLERS B J C, et al. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens:A mesocosm experiment[J]. Environmental Pollution, 2009, 157:2072-2081. doi:  10.1016/j.envpol.2009.02.024
    [43] LAMERS L P M, FALLA S J, SAMBORSKA E M, et al. Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands[J]. Limnology and Oceanography, 2002, 47:585-593. doi:  10.4319/lo.2002.47.2.0585
    [44] WELLE M, SMOLDERS A, CAMP H, et al. Biogeochemical interactions between iron and sulphate in freshwater wetlands and their implications for interspecific competition between aquatic macrophytes[J]. Freshwater Biology, 2007, 52, 434-447. doi:  10.1111/fwb.2007.52.issue-3
    [45] WESTON N B, VILE M A, NEUBAUER S C, et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 2011, 102:135-151. doi:  10.1007/s10533-010-9427-4
    [46] 龚梦丹, 金增锋, 王燕, 等.长江中下游典型浅水湖泊沉积物水界面磷与铁的耦合关系[J].湖泊科学, 2017, 29(5):1103-1111. http://d.old.wanfangdata.com.cn/Periodical/hpkx201705008
    [47] WANG J F, CHEN J A, GUO J Y, et al. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment[J]. Environmental Science and Pollution Research, 2018, 25:10740-10751. doi:  10.1007/s11356-018-1373-z
    [48] HOFFMANN C C, HEIBERG L, AUDET J, et al. Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water[J]. Ecological Engineering, 2012, 46:75-87. doi:  10.1016/j.ecoleng.2012.04.039
    [49] JIN X D, HE Y L, KIRUMBA G, et al. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir[J]. Ecological Engineering, 2013, 55:62-66. doi:  10.1016/j.ecoleng.2013.02.001
    [50] KENNETT D M, HARGRAVES P E. Benthic diatoms and sulfide fluctuations:Upper basin of Pettaquamscutt River, Rhode Island[J]. Estuarine, Coastal and Shelf Science, 1985, 21(4):577-586. doi:  10.1016/0272-7714(85)90058-7
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  50
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回