中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An algorithm for finding all polynomial solutions of nonlinear difference equations

YU Jiangtao LIU Yinping

余江涛, 柳银萍. 一个求非线性差分方程所有多项式解的算法[J]. 华东师范大学学报(自然科学版), 2020, (1): 24-39. doi: 10.3969/j.issn.1000-5641.201811037
引用本文: 余江涛, 柳银萍. 一个求非线性差分方程所有多项式解的算法[J]. 华东师范大学学报(自然科学版), 2020, (1): 24-39. doi: 10.3969/j.issn.1000-5641.201811037
YU Jiangtao, LIU Yinping. An algorithm for finding all polynomial solutions of nonlinear difference equations[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 24-39. doi: 10.3969/j.issn.1000-5641.201811037
Citation: YU Jiangtao, LIU Yinping. An algorithm for finding all polynomial solutions of nonlinear difference equations[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 24-39. doi: 10.3969/j.issn.1000-5641.201811037

一个求非线性差分方程所有多项式解的算法

doi: 10.3969/j.issn.1000-5641.201811037
详细信息
  • 中图分类号: O175.7; TP311.1

An algorithm for finding all polynomial solutions of nonlinear difference equations

More Information
  • 摘要: 差分方程是计算机代数中一个重要的研究内容, 但是目前很少有关于一般非线性差分方程求解方法的研究. 受到在非线性微分方程中广泛应用的齐次平衡原则的启发, 用其求解大部分非线性差分方程的多项式解. 同时, 提出了一个新的n阶展开方法, 用于求解齐次平衡原则无法求解的情况. 结合这两个方法提出了能够找到非线性差分方程所有多项式解的算法. 该算法基于Maple实现, 实验表明该算法是有效且高效的.
  • Fig.  1  Visualization of balance points

    Fig.  2  Time complexity

    Fig.  3  Distribution of balance points

    Fig.  4  Distribution of minimum expansion order

    Tab.  1  A brief analysis of the distributed consensus protocols

    TypeOrder equation(s)Order solution(s)
    $ BP_1 $$ 2m = m+5\geqslant 6 $$ m = 5 $
    $ BP_1 $$ 2m = 6\geqslant m+5 $$ m\in \varnothing $
    $ BP_1 $$ m+5 = 6\geqslant 2m $$ m = 1 $
    $ BP_2 $$ m+5>\max\{2m,6\} $$ m\in \{2,3,4\} $
    下载: 导出CSV
  • [1] ABRAMOV S A. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations [J]. Moscow University Computational Mathematics and Cybernetics, 1989(3): 63-68.
    [2] ABRAMOV S A. Rational solutions of linear differential and difference equations with polynomial coefficients [J]. USSR Computational Mathematics and Mathematical Physics, 1989, 29(6): 7-12. DOI:  10.1016/S0041-5553(89)80002-3.
    [3] PETKOVŠEK M. Hypergeometric solutions of linear recurrences with polynomial coefficients [J]. Journal of Symbolic Computation, 1992, 14(2/3): 243-264.
    [4] ABRAMOV S A, PETKOVŠEK M. D’Alembertian solutions of linear differential and difference equations [C]// Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1994: 169-174.
    [5] HENDRICKS P A, SINGER M F. Solving difference equations in finite terms [J]. Journal of Symbolic Computation, 1999, 27(3): 239-259. DOI:  10.1006/jsco.1998.0251.
    [6] ABRAMOV S A, BRONSTEIN M, PETKOVŠEK M. On polynomial solutions of linear operator equations [C]//Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995: 290-296.
    [7] ABRAMOV S A. Rational solutions of linear difference and q-difference equations with polynomial coefficients [C]//Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995: 285-289.
    [8] ABRAMOV S A, POLYAKOV S. Improved universal denominators [J]. Programming and Computer Software, 2007, 33(3): 132-138. DOI:  10.1134/S0361768807030024.
    [9] ABRAMOV S A, GHEFFAR A, KHMELNOV D. Factorization of polynomials and gcd computations for finding universal denominators [C]//International Workshop on Computer Algebra in Scientific Computing, 2010: 4-18.
    [10] ABRAMOV S A, GHEFFAR A, KHMELNOV D. Rational solutions of linear difference equations: Universal denominators and denominator bounds [J]. Programming and Computer Software, 2011, 37(2): 78-86. DOI:  10.1134/S0361768811020022.
    [11] ABRAMOV S A, KHMELNOV D. Denominators of rational solutions of linear difference systems of an arbitrary order [J]. Programming and Computer Software, 2012, 38(2): 84-91. DOI:  10.1134/S0361768812020028.
    [12] WANG M. Solitary wave solutions for variant Boussinesq equations [J]. Physics letters A, 1995, 199(3/4): 169-172. DOI:  10.1016/0375-9601(95)00092-H.
    [13] WANG M, ZHOU Y, LI Z. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J]. Physics Letters A, 1996, 216(1/5): 67-75.
    [14] ZHAO X, WANG L, SUN W. The repeated homogeneous balance method and its applications to nonlinear partial differential equations [J]. Chaos, Solitons & Fractals, 2006, 28(2): 448-453.
    [15] KHALFALLAH M. New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1169-1175. DOI:  10.1016/j.cnsns.2007.11.010.
    [16] KHALFALLAH M. Exact traveling wave solutions of the Boussinesq-Burgers equation [J]. Mathematical and Computer Modelling, 2009, 49(3/4): 666-671.
    [17] RADY A A, OSMAN E, KHALFALLAH M. The homogeneous balance method and its application to the BenjaminBona-Mahoney (BBM) equation [J]. Applied Mathematics and Computation, 2010, 217(4): 1385-1390. DOI:  10.1016/j.amc.2009.05.027.
    [18] NGUYEN L T K. Modified homogeneous balance method: Applications and new solutions [J]. Chaos, Solitons & Fractals, 2015, 73: 148-155.
    [19] ZHANG Y, LIU Y P, TANG X Y. M-lump solutions to a (3+1)-dimensional nonlinear evolution equation [J]. Computers & Mathematics with Applications, 2018, 76(3): 592-601.
    [20] ZHANG Y, LIU Y P, TANG X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system [J]. Nonlinear Dynamics, 2018, 93(4): 2533-2541. DOI:  10.1007/s11071-018-4340-9.
    [21] LI Z B, LIU Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations [J]. Computer Physics Communications, 2002, 148(2): 256-266. DOI:  10.1016/S0010-4655(02)00559-3.
    [22] LI Z B, LIU Y P. RAEEM: A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations [J]. Computer Physics Communications, 2004, 163(3): 191-201. DOI:  10.1016/j.cpc.2004.08.007.
    [23] MAY R M. Simple mathematical models with very complicated dynamics [J]. Nature, 1976, 261: 85-93. DOI:  10.1038/261459a0.
    [24] BITTANTI S, LAUB A J, WILLEMS J C. The Riccati Equation [M]. Berlin: Springer Science & Business Media, 2012.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  73
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 网络出版日期:  2019-12-26
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回