中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平衡态与非平衡态分子溶剂化自由能的计算效率比较

李鹏飞 王美婷 梅晔

李鹏飞, 王美婷, 梅晔. 平衡态与非平衡态分子溶剂化自由能的计算效率比较[J]. 华东师范大学学报(自然科学版), 2019, (1): 83-92. doi: 10.3969/j.issn.1000-5641.2019.01.010
引用本文: 李鹏飞, 王美婷, 梅晔. 平衡态与非平衡态分子溶剂化自由能的计算效率比较[J]. 华东师范大学学报(自然科学版), 2019, (1): 83-92. doi: 10.3969/j.issn.1000-5641.2019.01.010
LI Peng-fei, WANG Mei-ting, MEI Ye. Comparison of the efficiency of equilibrium and nonequilibrium molecular dynamic simulations of molecular solvation free energies[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 83-92. doi: 10.3969/j.issn.1000-5641.2019.01.010
Citation: LI Peng-fei, WANG Mei-ting, MEI Ye. Comparison of the efficiency of equilibrium and nonequilibrium molecular dynamic simulations of molecular solvation free energies[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 83-92. doi: 10.3969/j.issn.1000-5641.2019.01.010

平衡态与非平衡态分子溶剂化自由能的计算效率比较

doi: 10.3969/j.issn.1000-5641.2019.01.010
基金项目: 

国家自然科学基金 21773066

详细信息
    作者简介:

    李鹏飞, 男, 博士研究生, 研究方向为计算生物物理.E-mail:alan.pengfeili@stu.ecnu.edu.cn

    通讯作者:

    梅晔, 男, 研究员, 博士生导师, 研究方向为计算生物物理.E-mail:ymei@phy.ecnu.edu.cn

  • 中图分类号: O469

Comparison of the efficiency of equilibrium and nonequilibrium molecular dynamic simulations of molecular solvation free energies

  • 摘要: 着眼于13个中性氨基酸侧链类似物在水中的溶剂化自由能的计算,来比较两种计算自由能的平衡态动力学模拟和非平衡态动力学模拟方法在高性能计算机上的表现.研究发现,利用非平衡态动力学模拟来计算自由能除了在准确度上和平衡态动力学模拟的计算一致之外,在计算效率和实际所需时间上,非平衡方法计算效率更高,实际所需时间更少.
  • 图  1  动力学方法示意图

    Fig.  1  A schematic diagram of the dynamic method

    图  2  氨基酸侧链类似物的结构

    Fig.  2  The structure of side chain analogs of amino acids

    图  3  平衡态动力学方法计算的收敛性

    Fig.  3  The convergence of hydration free energy calculated by the equilibrium dynamic method

    图  4  非平衡态动力学方法计算的收敛性

    Fig.  4  The convergence of hydration free energy calculated by the nonequilibrium dynamic method

    表  1  氨基酸侧链类似物的简称

    Tab.  1  Simplified names for side chain analogs of amino acids

    氨基酸侧链类似物名称 对应氨基酸的简称
    acetamide Asn
    methanethiol Cys
    propionamide Gln
    methanol Ser
    ethanol Thr
    n-butane Ile
    iso-butane Leu
    methylthioethane Met
    toluene Phe
    skatole Trp
    4-methylphenol Tyr
    propane Val
    methane Ala
    下载: 导出CSV

    表  2  氨基酸侧链类似物在水中的溶剂化自由能

    Tab.  2  Hydration free energy of side chain analogs of amino acids

    kcal/mol
    分子简称 平衡(MBAR) 非平衡(BAR) 实验值$^{a}$
    Ala 2.41$\pm$0.02 2.33$\pm$0.06 1.94
    Asn -9.58$\pm$0.04 -9.80$\pm$0.12 -9.68
    Ile 2.51$\pm$0.03 2.50$\pm$0.12 2.15
    Leu 2.30$\pm$0.03 2.19$\pm$0.11 2.28
    Phe -0.69$\pm$0.04 -0.59$\pm$0.14 -0.76
    Ser -4.71$\pm$0.03 -4.34$\pm$0.09 -5.06
    Trp -5.45$\pm$0.04 -5.99$\pm$0.21 -5.88
    Val 2.29$\pm$0.03 2.42$\pm$0.10 1.99
    Cys -0.31$\pm$0.02 -0.59$\pm$0.08 -1.24
    Gln -8.52$\pm$0.04 -8.53$\pm$0.14 -9.38
    Met 0.48$\pm$0.03 0.61$\pm$0.12 -1.48
    Thr -4.20$\pm$0.03 -3.93$\pm$0.09 -4.88
    Tyr -4.68$\pm$0.04 -4.52$\pm$0.18 -6.11
    RMSD 0.82 0.88
    MSE 0.61 0.61
    下载: 导出CSV
  • [1] KOLLMAN P. Free energy calculations:Applications to chemical and biochemical phenomena[J]. Chem Rev, 1993, 93(7):2395-2417. doi:  10.1021-cr00023a004/
    [2] HANSEN N, VAN GUNSTEREN W F. Practical aspects of free-energy calculations:A review[J]. J Chem Theory Comput, 2014, 10(7):2632-2647. doi:  10.1021/ct500161f
    [3] WOLFENDEN R, ANDERSSON L, CULLIS P M, et al. Affinities of amino acid side chains for solvent water[J]. Biochemistry, 1981, 20(4):849-855. doi:  10.1021-bi00507a030/
    [4] RADZICKA A, WOLFENDEN R. Comparing the polarities of the amino acids:Side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol and neutral aqueous solution[J]. Biochemistry, 1988, 27(5):1664-1670. doi:  10.1021-bi00405a042/
    [5] SHIRTS M R, PITERA J W, SWOPE W C, et al. extremely precise free energy calculations of amino acid side chain analogs:Comparison of common molecular mechanics force fields for proteins[J]. J Chem Phys, 2003, 119(11):5740-5761. doi:  10.1063/1.1587119
    [6] HESS B, NICO F A. Hydration thermodynamic properties of amino acid analogues:A systematic comparison of biomolecular force fields and water models[J]. J Phys Chem B, 2006, 110(35):17616-17626. doi:  10.1021/jp0641029
    [7] VILLA A, MARK A E. Calculation of the free energy of solvation for neutral analogs of amino acid side chains[J]. J Comput Chem, 2002, 23(5):548-553. doi:  10.1002/(ISSN)1096-987X
    [8] MACCALLUM J L, TIELEMAN D P. Calculation of the water-cyclohexane transfer free energies of neutral amino acid side-chain analogs using the all-atom force field[J]. J Comput Chem, 2003, 24(15):1930-1935. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b666990cea35e118e3d587513d75e26
    [9] WANG J M, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. J Comput Chem, 2004, 25:1157-1174. doi:  10.1002/(ISSN)1096-987X
    [10] CASE D A, BERRYMAN J T, BETZ R M, et al. AMBER 2014[Z]. San Francisco: University of California, 2014.
    [11] ZWANZIG R W. High-temperature equation of state by a perturbation method. I. nonpolar gases[J]. J Chem Phys, 1954, 22(8):1420-1426. doi:  10.1063/1.1740409
    [12] KIRKWOOD J G. Statistical mechanics of fluid mixtures[J]. J Chem Phys, 1935, 3(5):300-313. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0405486
    [13] BENNETT C H. Efficient estimation of free energy differences from monte carlo data[J]. J Comput Phys, 1976, 22(2):245-268.
    [14] SHIRTS M R, CHODREA J D. Statistically optimal analysis of samples from multiple equilibrium states[J]. J Chem Phys, 2008, 129(12):124105. doi:  10.1063/1.2978177
    [15] PALIWAL H, SHIRTS M R. A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods[J]. J Chem Theory Comput, 2011, 7(12):4115-4134. doi:  10.1021/ct2003995
    [16] BRUCKNER S, BORESCH S. Efficiency of alchemical free energy simulations. I. A practical comparison of the exponential formula, thermodynamic integration, and bennett's acceptance ratio method[J]. J Comput Chem, 2011, 32(7):1303-1319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a70d7702bf997472a44ed9e01c9b9311
    [17] RUITER A, BORESCH S, OOSTENBRINK C. Comparison of thermodynamic integration and bennett acceptance ratio for calculating relative protein-ligand binding free energies[J]. J Comput Chem, 2013, 34(12):1024-1034. doi:  10.1002/jcc.23229
    [18] JARZYNSKI C. Nonequilibrium equality for free energy differences[J]. Phys Rev Lett, 1997, 78:2690-2693. doi:  10.1103/PhysRevLett.78.2690
    [19] CROOKS G. Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems[J]. J Statis Phys, 1998, 90:1481-1487. doi:  10.1023/A:1023208217925
    [20] CROOKS G. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences[J]. Phys Rev E, 1999, 60:2721-2726. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f9901352
    [21] CROOKS G. Path-ensemble averages in systems driven far from equilibrium[J]. Phys Rev E, 1999, 61:2361-2726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=505fa1494c559d9418a47be4914566b9
    [22] JARZYNSKI C. Rare events and the convergence of exponentially averaged work values[J]. Phys Rev E, 2006, 73:046105. doi:  10.1103/PhysRevE.73.046105
    [23] SHIRTS M R, BAIR E, HOOKER G, et al. Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods[J]. Phys Rev Lett, 2003, 91:140601. doi:  10.1103/PhysRevLett.91.140601
    [24] COSSINS B P, FOUCHER S, EDGE C M, et al. Assessment of nonequilibrium free energy methods[J]. J Phys Chem B, 2009, 113:5508-5519. doi:  10.1021/jp803532z
    [25] GOETTE M, GRUBMULLER H. Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes[J]. J Comput Chem, 2009, 30:447-456. doi:  10.1002/jcc.v30:3
    [26] JARZYNSKI C. Equilibrium free-energy differences from nonequilibrium measurements:A master-equation approach[J]. Phys Rev E, 1997, 56:5018-5035. doi:  10.1103/PhysRevE.56.5018
    [27] HENDRIX D A, JARZYNSKI C. A fast growth method of computing free energy differences[J]. J Chem Phys, 2001, 114:5974-5981. doi:  10.1063/1.1353552
    [28] HUMMER G. Fast-growth thermodynamic integration:Error and efficiency analysis[J]. J Chem Phys, 2001, 114:7330-7337. doi:  10.1063/1.1363668
    [29] YTREBERG F M, ZUCKERMAN D M. Single-ensemble nonequilibrium path-sampling estimates of free energy differences[J]. J Chem Phys, 2004, 120:10876-10879. doi:  10.1063/1.1760511
    [30] LECHNER W, OBERHOFER H, DELLAGO C, et al. Equilibrium free energies from fast-switching trajectories with large time steps[J]. J Chem Phys, 2006, 124:044113. doi:  10.1063/1.2162874
    [31] BAYLY C I, CIEPLAK P, CORNELL W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges:The RESP model[J]. J Phys Chem, 1993, 97(40):10269-10280. doi:  10.1021/j100142a004
    [32] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision B.01.[Z], Wallingford: Ganussian Inc, 2010.
    [33] STEINBRECHER T, MOBLEY D L, CASE D A. Nonlinear scaling schemes for lennard-jones interactions in free energy calculations[J]. J Chem Phys, 2007, 127:214108. doi:  10.1063/1.2799191
    [34] DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald:An nlog(N) method for ewald sums in large systems[J]. J Chem Phys, 1993, 98:10089-10092. doi:  10.1063/1.464397
    [35] WENNMOHS F, SCHINDLER M. Development of a multipoint model for sulfur in proteins:A new parametrization scheme to reproduce high-level ab initio interaction energies[J]. J Comput Chem, 2005, 26(3):283-293. http://www.ncbi.nlm.nih.gov/pubmed/15614798
    [36] OLIVET A, VEGA L F. Optimized molecular force field for sulfur hexafluoride simulations[J]. J Chem Phys, 2007, 126(14):144502. doi:  10.1063/1.2714953
    [37] ZHANG X J, GONG Z, LI J, et al. Intermolecular sulfur... oxygen interactions:Theoretical and statistical investigations[J]. J Chem Inf Model, 2015, 55:2138-2153. doi:  10.1021/acs.jcim.5b00177
    [38] WANG M T, LI P F, JIA X Y, et al. An efficient strategy for the calculations of solvation free energies in water and chloroform at quantum mechanical/molecular mechanical level[J]. J Chem Inf Model, 2017, 57:2476-2489. doi:  10.1021/acs.jcim.7b00001
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  56
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-20
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回