中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究

黄贤智 朴贤卿 蔡亚果

黄贤智, 朴贤卿, 蔡亚果. 光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究[J]. 华东师范大学学报(自然科学版), 2019, (1): 93-104, 114. doi: 10.3969/j.issn.1000-5641.2019.01.011
引用本文: 黄贤智, 朴贤卿, 蔡亚果. 光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究[J]. 华东师范大学学报(自然科学版), 2019, (1): 93-104, 114. doi: 10.3969/j.issn.1000-5641.2019.01.011
HUANG Xian-zhi, PIAO Xian-qing, CAI Ya-guo. Preparation of photocatalytic materials MIL-125(Ti)/BiOI and photocatalytic performance study[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 93-104, 114. doi: 10.3969/j.issn.1000-5641.2019.01.011
Citation: HUANG Xian-zhi, PIAO Xian-qing, CAI Ya-guo. Preparation of photocatalytic materials MIL-125(Ti)/BiOI and photocatalytic performance study[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 93-104, 114. doi: 10.3969/j.issn.1000-5641.2019.01.011

光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究

doi: 10.3969/j.issn.1000-5641.2019.01.011
基金项目: 

上海市自然科学基金 16ZR1410700

详细信息
    作者简介:

    黄贤智, 男, 硕士研究生, 研究方向为光催化.E-mail:834620078@qq.com

    通讯作者:

    朴贤卿, 男, 教授, 硕士生导师, 研究方向为材料科学.E-mail:xqpiao@phy.ecnu.edu.cn

    蔡亚果, 女, 博士研究生, 研究方向为光催化.E-mail:1506188409@qq.com

  • 中图分类号: O469

Preparation of photocatalytic materials MIL-125(Ti)/BiOI and photocatalytic performance study

  • 摘要: 以五水硝酸铋、碘化钾、MIL-125(Ti)为原料,以乙二醇为溶剂,以柠檬酸为结构诱导剂,通过一步共沉淀法制备了异质结结构光催化剂MIL-125(Ti)/BiOI,并测试了该催化剂在可见光下对有机染料罗丹明B的光催化降解效果.通过XRD(X-ray Diffraction)、PL(Photolumiscence)、SEM(Scanning Electron Microscope)、BET和UV-Vis(Ultraviolet and Visible Spectrophotometer)等表征手段研究了其结构、形貌、光谱与催化性能间的关系,并从能带结构上分析了其催化机理.结果表明,通过调节Ti:Bi,MIL-125(Ti)/BiOI在可见光照射下对有机染料罗丹明B有很好的光催化降解效果,并且该催化剂具有良好的稳定性,具有一定的工业化应用前景.
  • 图  1  MIL-125(Ti)、BiOI和M-BiOI-$X$的XRD图

    Fig.  1  XRD patterns of MIL-125(Ti), BiOI, and M-BiOI-$X$

    图  2  DMF、MIL-125(Ti)的DMF溶液和MIL-125(Ti)/Bi(NO$_{3})_{3}$的DMF溶液的PL图谱

    Fig.  2  PL spectrums of DMF, MIL-125(Ti)/DMF solution, and MIL-125(Ti)/Bi(NO$_{3})_{3}$ DMF solution

    图  3  M-BiOI-1 (a)、M-BiOI-2 (b)、M-BiOI-3 (c)、M-BiOI-4 (d)、M-BiOI-5 (e)、M-BiOI-6 (f)的SEM照片

    Fig.  3  SEM images of M-BiOI-1 (a), M-BiOI-2 (b), M-BiOI-3 (c), M-BiOI-4 (d), M-BiOI-5 (e), M-BiOI-6 (f)

    图  7  MIL-125(Ti)、BiOI和M-BiOI-$X$样品对应的能带图

    Fig.  7  Energy band diagram of MIL-125(Ti), BiOI, and M-BiOI-$X$

    图  4  4 M-BiOI-5的EDX(a)以及各元素的元素映射图像(b)-(f)

    Fig.  4  (a) EDX spectrum, (b)-(f) corresponding elemental mapping images of M-BiOI-5

    图  5  BiOI、MIL-125 (Ti)和M-BiOI-$X$的N$_{2}$吸附-脱附等温线

    Fig.  5  N$_{2}$ absorption-desorption isotherm spectrums of BiOI, MIL-125 (Ti), and M-BiOI-$X$

    图  8  MIL-125(Ti)、BiOI和M-BiOI-$X$样品对罗丹明B的光催化降解曲线

    Fig.  8  Photocatalytic degradation of Rhodamine B by MIL-125 (Ti), BiOI, and M-BiOI-$X$

    图  6  MIL-125(Ti)、BiOI和M-BiOI-$X$的UV-Vis漫反射光谱

    Fig.  6  UV-Vis diffuse reflection spectrums of MIL-125(Ti), BiOI, and M-BiOI-$X$

    图  9  MIL-125(Ti)、BiOI和M-BiOI-$X$样品降解的动力学线性拟合ln($C_{0}/C)\sim t$曲线

    Fig.  9  Dynamic linear fitting curve ln($C_{0}/C)\sim t$ for MIL-125(Ti), BiOI, and M-BiOI-$X$

    图  10  M-BiOI-5光催化性能测试前和测试后的XRD图

    Fig.  10  XRD patternsof M-BiOI-5 before and after photocatalytic performance testing

    图  11  可见光条件下M-BiOI-53次循环降解罗丹明B的降解曲线图比较

    Fig.  11  Degradation curve for three cycles of degrading RhB for M-BiOI-5 under visible light

    图  12  MIL-125(Ti)/BiOI异质结结构光催化剂机理图

    Fig.  12  Mechanism of photocatalyst of heterostructure for MIL-125(Ti)/BiOI

    表  1  BiOI、MIL-125 (Ti)和M-BiOI-$X$的比表面积、总孔体积、微孔体积

    Tab.  1  Specific surface area, total pore volume, and micropore volume of BiOI,

    样品 比表面积/(m$^{2}\cdot$g$^{-1}$) 总孔体积/(cm$^{3}\cdot$g$^{-1}$) 微孔体积/(cm$^{3}\cdot$g$^{-1}$)
    BiOI 13 0.101 0.121
    M-BiOI-1 121 0.135 0.124
    M-BiOI-2 297 0.326 0.236
    M-BiOI-3 401 0.387 0.262
    M-BiOI-4 506 0.432 0.298
    M-BiOI-5 598 0.421 0.324
    M-BiOI-6 768 0.413 0.376
    MIL-125(Ti) 851 0.408 0.408
    下载: 导出CSV

    表  2  MIL-125(Ti)、BiOI和M-BiOI-$X$样品降解的动力学反应速率常数

    Tab.  2  Kinetic reaction rate constant for MIL-125(Ti), BiOI, and M-BiOI-$X$

    $k_{\rm app}$/min$^{-1}$ 样品
    0.0066 BiOI
    0.0099 M-BiOI-1
    0.0112 M-BiOI-2
    0.0134 M-BiOI-3
    0.0303 M-BiOI-4
    0.0316 M-BiOI-5
    0.0153 M-BiOI-6
    0.0091 MIL-125
    下载: 导出CSV
  • [1] SE-NA KIM, JUN KIM, HEE-YOUNG KIM, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204:85-93 doi:  10.1016/j.cattod.2012.08.014
    [2] CAO J, XU B U, LIN H L, et al. Chemical etching preparation of BiOI/BiOBr heterostructu-res with enhanced photocatalytic properties fororganic dye removal p[J]. Chem EngJ, 2012, 185/186:91-99. doi:  10.1016/j.cej.2012.01.035
    [3] LI H L, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279. doi:  10.1038/46248
    [4] NASALEVICH M A, VAN DER VEEN M, KAPTEIJN F, et al. Metal-organic frameworks as heterogeneous photocatalysts:Advantages and challenges[J]. CrystEngComm, 2014, 16:4919-4926. doi:  10.1039/C4CE00032C
    [5] ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry-A European Journal, 2007, 13:5106-5112. doi:  10.1002/(ISSN)1521-3765
    [6] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from watarusing metalorganic frameworks[J]. Journal of Hazardous Materials, 2012, 209:151-157. http://www.ncbi.nlm.nih.gov/pubmed/22277335
    [7] DU J J, YUAN Y P, SUN J X, et al. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190:945-951. doi:  10.1016/j.jhazmat.2011.04.029
    [8] XIA J, YIN S, LI H M, et al. Enhanced photocatalytic activityof bismuth oxyiodine (BiOI) porousmicrospheressynthesizedvia reactable ionicliquid-assistedsolvothermaI method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 387(123):23-28. http://www.sciencedirect.com/science/article/pii/S0927775711004572
    [9] LÜ Y H, LIU H, ZHANG W, et al. Room-temperature synthesis and high visible-light-induced photocatalytic activity of AgI/BiOI composites[J]. Journal of Environmental Chemical Engineering, 2013(1):526-533. http://www.sciencedirect.com/science/article/pii/S221334371300081X
    [10] HE Z Q, XIE L, TU J J, et al. Visible light-induced degradation of phone lover iodine-d-opedtitanium dioxide modified with platinum:Role of platinum and there action mechanism[J]. Journal of Chemical Physics, 2010, 114(1):526-532.
    [11] CHAI I H, TANG X M, WEAVERS I K. Kinetics and mechanism of photo activated periodate re-action with 4-chlorophenol in acidic soIution[J]. Environmental Science & Technology, 2004, 38(24):6875-6880. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15669352
    [12] FUJISHMA A, HONDA K. Photolysis-decomposition of water at surface of an irradiated semiconductor[J]. Nature, 1972, 238:37-38. doi:  10.1038/238037a0
    [13] SHI X J, CHEN X, CHEN X L, et al. PVP assisted hydrothermal synthesis of Bi-OBr hierarchical nanostructures and high photocatalytic capacity[J]. Chemical Engineering Journal, 2013, 222:120-127. doi:  10.1016/j.cej.2013.02.034
    [14] HOFFMANN M R, MARTIN S T, CHOI W, BAHNEMANN D W. Environmental applications of semicon-ductor photocatalysis[J]. Chemical Reviews, 1995, 95:69-96. doi:  10.1021/cr00033a004
    [15] CHEN X, MAO S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7):2891-2959. doi:  10.1021/cr0500535
    [16] MAO Y B, WONG S S. Size and shape-dependent transformation of nanosized titanate into analogous Anatase Titania Nanostructures[J]. Journal of the American Chemical Society, 2006, 128(25):8217-8226. doi:  10.1021/ja0607483
    [17] WANG W D, HUANG F Q, LIN X P. xBiOI-(1-x)BiOCl as efficient visible-light-driven photo-catalysts[J]. Scripta Materialia, 2007, 56(8):669-672. doi:  10.1016/j.scriptamat.2006.12.023
    [18] XIA J X, YIN S, LI H M, et al. Self-assembly and enhanced photocata-lytic properties of BiOI hollow microspheres via a reactable Ionic Liquid[J]. Langmuir, 2011, 27(3):1200-1206. doi:  10.1021/la104054r
    [19] CAO J, XU B Y, LUO B D, et al. Novel BiOI/BiOBr heterojunctionphotocatalysts with enhanced visible light photocatalytic properties[J]. Catalysis Communicati-ons, 2011, 13:63-68. http://www.sciencedirect.com/science/article/pii/S1566736711002445
    [20] HENDON C H, TIANA D, FONTECAVE M, et al. Engineering the optical res-ponse of the titanium-MIL-125 metal-organic framework through ligand functionalization[J]. Journal of the American Chemical Soceity, 2013, 135:10942-10945 doi:  10.1021/ja405350u
    [21] CHEN Y J, WEN M, WU Q S. Stepwise blossoming of BiOBr nanoplate-assembled microflowers and their visible-light photocatalytic activities[J]. CrystEngComm, 2011, 13:3035-3039. doi:  10.1039/c0ce00955e
    [22] LEI Y Q, WANG G H, SONG S Y, et al. Room temperature, te-mplate-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and ele-ctrochemical hydrogen storage properties[J]. Dalton Transactions, 2010, 39:3273-3278. doi:  10.1039/b922126c
    [23] YU C L, YU J C, FAN C F, et al. Synthesis and characterization of Pt/BiOI na-noplate catalyst with enhanced activity under visible light irradiation[J]. Materials Science and Engineering B, 2010, 166:213-219. doi:  10.1016/j.mseb.2009.11.029
    [24] ROSS H, BENDIG J, HECHT S. Sensitized photo catalytical oxidation of terbutylazine[J]. Solar Energy Materials and Solar Cells, 1994, 33(4):475-481. doi:  10.1016/0927-0248(94)90007-8
    [25] CHATTERJEE D, MAHATA A. Demineralization of organic Pollutants on the DyeModified TiO2 semiconductor particulate system using visible light[J]. Applied Catalysis Environmental, 2001, 33(2):119-125. doi:  10.1016/S0926-3373(01)00170-9
    [26] MOSER J, GRAETZEL M. Photoxensitixed electron injection in colloidal semiconductors[J]. Journal of the American Chemical Society, 1984, 106:6557-6564. doi:  10.1021/ja00334a017
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  50
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-17
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回